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Abstract—Person re-identification has received increasing at-
tention due to the high performance achieved by new methods
based on deep learning. With larger networks of cameras being
deployed, more surveillance videos need to be parsed, and
extracting features for each frame remains a bottleneck. In
addition, the feature extraction needs to be robust to images
captured in a variety of scenarios. We propose using deep
neural network distillation for training a feature extractor with
a lower computational cost, while keeping track of its cross-
domain ability. In the end, the proposed model is three times
faster, without a decrease in accuracy. Results are validated on
two popular person re-identification benchmark datasets and
compared to a solution using ResNet.

Index Terms—person re-identification, cross-domain, distilla-
tion, convolutional neural networks

I. INTRODUCTION

Person re-identification (re-ID) refers to the task of finding
a person of interest (query) across images or videos captured
by different cameras (gallery). Cameras are usually placed in
uncontrolled environments, where the quality of the videos is
far from ideal and subjects might be partially occluded.

The increasing demand of public safety and the growing
size of camera networks result in more surveillance videos
needing to be parsed. Given this demand, current state-of-
the-art re-ID architectures are computationally expensive to
run, as reported e.g., in [1], [2], using ResNet and Inception
as the backbone Convolutional Neural Network (CNN). This
highlights the need for smaller and faster re-ID models that
are still highly accurate.

In a scenario where it is not possible to further tune the
system once deployed, it is also important that the system is
able to generalize to unseen environments without having its
performance considerably reduced. The current literature does
not often consider the accuracy of the proposed algorithms
when presented with images captured in other environments.
For instance, while the model proposed in [1] achieves state-
of-the-art results on the Market-1501 [3] dataset , with 83.40%
rank-1 accuracy and 66.88% mAP, when tested on another
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popular dataset, DukeMTMC-reID [4], its performance drops
significantly, achieving only 18.72% rank-1 and 9.20% mAP.

This paper addresses the above problems, and its key con-
tributions are: (1) distillation is applied to develop a faster and
more compact model, with a better trade-off between accuracy
and speed; (2) distillation is used to improve the generalization
power of person re-ID algorithms; (3) the proposed model
is tested on a cross-domain scenario. To the best of our
knowledge, this is the first work studying the performance
of a person re-ID model when tested on a new domain.

The paper is organized as follows: Section II briefly re-
views the relevant state-of-the-art publications. The proposed
methodology is presented in Section III and Section IV dis-
cusses implementation details, provides information about the
databases and metrics used for evaluation, and reports the re-
sults obtained for each proposed topology. Finally, conclusions
are drawn in Section V.

II. RELATED WORK

Person re-ID is a very active area of research [5]–[9]. For
many years, systems relying on manual feature selection were
the most popular approaches to find matching footage of a
person across an array of cameras [5], [10]–[14]. However, in
recent years and with the rise in popularity of deep learning,
their performance has been surpassed. Convolutional neural
networks are now the state-of-the-art approach for re-ID [15].
For a survey on recent approaches see [5], [15].

Two deep-learning approaches are commonly used to ad-
dress the re-identification problem. In the first one, a CNN
is fine-tuned as a classifier to optimize its performance on
one of the existing re-ID datasets, typically by minimizing
the cross-entropy loss between the predicted labels and the
ground-truth labels in the dataset [2], [15], and the activations
computed before the fully connected classification layer are the
features to be used for matching. The second approach relies
on using different cost functions, such as the contrastive or the
triplet loss, aiming at directly learning a data representation
that brings together feature points corresponding to images
of the same identity, while separating those extracted from
images of different people [1], [16].

While complex CNN architectures have proven to be accu-
rate for use in re-identification problems, they are cumbersome
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in practice due to high-end hardware requirements. Popular
compression techniques for reducing the computational cost
during inference range from pruning individual neuron weights
[17], to pruning entire convolutional filters [18]–[20]. A more
compact architecture can also be trained to replicate the output
of a more accurate model. This is the process adopted in this
paper, and it was originally proposed in [21].

III. METHODOLOGY

The architecture of the proposed system follows the standard
pipeline of re-ID works [5]. The system takes as input images
that have already been cropped to the bounding box containing
only the person. These are then preprocessed and fed to the
feature extractor to compute a feature vector (descriptors).

After the feature extractor computes descriptors for the
query, the Euclidean distance is used as similarity metric to
find the closest matches to the query image, by computing the
distance to the descriptors previously stored in the gallery. To
be successful, the model should keep the extracted feature
points belonging to the same person close together, while
pushing feature points from different people further apart.

Feature extraction is a key component to the success of
person re-ID system, with most current approaches using
CNN-based feature extractors. The backbone CNN is usually
trained on the chosen re-ID dataset using the cross-entropy
loss. During training, the softmax activation outputs the ID of
the input image. At inference time, the fully-connected layer
is often removed and the extracted features correspond to the
output of the convolutional layers after the pooling layer.

A. Distillation

In order to develop a fast and computationally simple feature
extractor the CNN backbone can be replaced by a lighter
architecture with faster inference time. However, the resulting
performance can be affected, as a simpler network might lack
the ability to learn a powerful enough data representation.

Alternatively, distillation [21] allows to adopt a simpler
architecture, denoted student network, and have its training
guided by a more powerful pre-trained network, denoted
teacher network. The student network can thus be trained using
the available ground truth labels together with the teacher
network predictions, which are used as soft labels. The adopted
distillation-based architecture is represented in Figure 1.

The softmax activation function after the last layer of a CNN
converts each logit zi to a class probability qi by taking into
account the value of the other logits:

qi =
exp(zi/T )∑
j exp(zj/T )

(1)

where T is denoted as temperature, taking the default
value of 1. Increasing the value of the temperature parameter
results in a probability distribution with higher entropy (the
predictions are softened), as illustrated in Figure 2.

The relative probabilities of the classes, predicted by the
teacher network, provide a considerable amount of information

Fig. 1. Overview of proposed architecture.

(a) T = 1

(b) T = 3

Fig. 2. Influence of the temperature parameter T on the output of a softmax
activation. In this example, each class corresponds to one of the 751 IDs
present on the Market-1501 dataset.

about what classes are seen as similar, and how the com-
plex model tends to generalize, allowing the simpler student
network to learn a model that approximates reasonably well
the original one, learnt using a deeper network. Moreover,
increasing the entropy of the soft-labels can be seen as as a
regularizer, with the additional noise helping to prevent model
overfitting and contributing to improve the model accuracy.

The cost function for training the student network becomes:

Lstudent = H(pteacher(T = T0), pstudent(T = T0))+

λH(ground truth, pstudent(T = 1)) (2)

The first term, the distillation loss, is the cross-entropy
with the soft targets, being computed using the same (high)
temperature T0 in the softmax of the student model that
was used by the teacher model to generate the soft targets.
The second term is the cross entropy with the ground truth
labels, being computed with temperature of 1. λ defines the
contribution of the cross-entropy loss using the ground truth
labels to the total loss function and should be selected so that
both terms converge together, as illustrated in Figure 3.
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(a) Distillation loss

(b) Classification loss

Fig. 3. Selection of the λ parameter in the student network loss function.
When λ is too high (λ = 1), the classification loss leads the training and
prevents the sum of both losses to converge to a lower value.

During training, only the student network weights are up-
dated to minimize the loss function, as the goal is to have the
student network mimic the teacher network.

IV. EXPERIMENTS

This section presents the results obtained using the proposed
methodology.

A. Datasets

Two datasets are selected for training and evaluation. Person
re-identification datasets come with a training split, and query
and gallery splits used for validation, the later containing
images of people not present in the training split. For each
query image, the goal is to find all the images in the gallery
set corresponding to the same person.

The Market-1501 (Market) [3] and DukeMTMC-reID
(Duke) [4] datasets were chosen due to their popularity. Market
contains 32668 images of 1501 different people, while Duke
has 36441 images of 1812 different people, corresponding
to an average of 17 and 24 training images of each person,
respectively. The first dataset was captured across 6 cameras
and has 2798 distractor images in the gallery set with no
corresponding images in the query set, while the second was
captured by 8 cameras and has 3463 distractors, providing a
more challenging setup.

Only one dataset is used for training in each experiment.
The model performance is evaluated in the dataset where
it was trained, but also a generalization, or cross-domain,
evaluation is done, by assessing the model’s performance on
the other dataset. This simulates the condition where the model

is trained with a given set of data and, when deployed, it will
be used with a different setup and population of users.

B. Evaluation Metrics
Two metrics commonly used to evaluate the performance

of re-ID algorithms are adopted: the rank-1 accuracy and
the Mean Average Precision (mAP), i.e., the average of the
maximum precision at different recall values [5]. A query is
given rank-1 when the first subject returned by the system is
the correct one. If multiple ground truth images have the same
label in the gallery, rank-1 may not be discriminative enough
to distinguish two systems and the mAP should also be used.

C. Implementation details
ResNet-50 [22] and MobileNet [23] have been selected

for teacher and student networks, respectively. ResNet-50
has been proven to learn suitable representations for re-
ID [15], providing a good benchmark for comparison of
results. MobileNet lacks skip connections and replaces stan-
dard convolutions with depth-wise separable convolutions,
resulting in faster inference times, having shown good results
for distillation. Additionally, MobileNet’s depth multiplier, α,
allows to further reduce complexity, multiplying the number of
convolutional filters on each layer by α. For this study, α = 1.0
and α = 0.25 are considered, corresponding to the default and
the smallest MobileNet models available pre-trained.

For baseline results, networks were trained for 30 epochs on
both datasets. The optimizer used was the Stochastic Gradient
Descent, with a batch size of 16, learning rate of 0.001,
momentum of 0.9 and learning rate decay of 0.1 every 20.000
batches. For the distillation experiments, the learning rate was
set to 0.02 and models were trained for 25 epochs.

D. Data Preprocessing
Before feeding the training images to the feature extractor, a

preprocessing step normalizes the available images according
to the CNN architecture [22], [23].

Images are resized so that their largest dimension is 256
pixels and the original aspect ratio is kept.

Since the number of images of each person available in the
re-ID datasets is limited, data augmentation is used to provide
more data for training the network, considering:

• Random horizontal flips (baseline);
• Random desaturation of images, up to 10%;
• Random rotations, up to 5 degrees;
• Random cropping.
Table I studies the impact of each transformation. Only

Market-1501 was chosen as the training dataset, being repre-
sentative enough since both datasets having similar dimensions
and number of images per class, which should correspond to
similar intra-class variability.

We can observe that random rotations alone lead to the
highest rank-1 and mAP on the second dataset. Randomly
desaturating the input image results in a decrease of accuracy
on both datasets.

In light of these results, we apply random horizontal flips
and rotations for data augmentation for the rest of this paper.
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TABLE I
DATA AUGMENTATION: RESNET TRAINED ON MARKET-1501.

Market Duke
Rank-1 mAP Rank-1 mAP

H. Flip (Baseline) 67.93 41.61 26.80 12.70
H. Flip + 0.9 Sat 56.18 27.94 21.54 8.81
H. Flip + Rot. 69.51 43.20 27.15 13.18
H. Flip + Crop 68.71 43.97 25.31 12.38
H. Flip + Crop + Rot. 68.68 43.30 27.10 12.97

E. Baseline Results

Both networks are first initialized with their ImageNet pre-
trained weights [24] and fine-tuned on both datasets without
distillation to set a benchmark. The obtained performance
results are presented in Table II.

TABLE II
FINETUNING ON MARKET-1501 AND DUKEMTMC-REID

Market Duke
Trained on Rank-1 mAP Rank-1 mAP
Market ResNet 69.51 43.20 27.15 13.18

MobileNet 1.0 75.80 51.60 15.17 6.65
MobileNet 0.25 74.29 48.80 17.68 7.74

Duke ResNet 37.0 13.99 64.45 44.12
MobileNet 1.0 37.65 14.0 62.66 40.77
MobileNet 0.25 35.48 12.85 62.16 39.05

As expected, both models achieve higher rank-1 accuracy
and mAP on the training dataset than on the second dataset.
When trained on Market-1501, MobileNet achieves slightly
higher performance when compared to the ResNet model,
despite its simpler architecture. This is due to models being
evaluated in a retrieval scenario, which is not being directly
optimized when training as a classifier. Nonetheless, its perfor-
mance is significantly lower on the DukeMTMC-reID dataset.
On the other hand, both models achieve very similar perfor-
mance on both datasets when trained on the DukeMTMC-reID
dataset, as this is a more challenging dataset.

While the performance drop is expected when testing a
system on a different dataset than the one it was trained on, a
good feature extractor should not see its performance dropping
drastically. In other words, it should generalize well to unseen
environments.

Due to the skip connections and higher number of layers,
ResNet is more robust to changes in the data. In contrast,
MobileNet is learning a simpler representation of the training
data, resulting in worse cross-domain performance.

F. Distillation

For this experiment, the MobileNet models are guided
during training by ResNet, according to section III. Firstly, the
two parameters T and λ used in the distillation loss function
need to be determined.

MobileNet with a α = 1.0 is trained as student network
and it is initialized with its ImageNet pretrained weights. The
trained ResNet model from the previous experiment is used
as the teacher network. Data augmentation is equally applied

to the input images of both networks. λ is first fixed to 0.001
and distillation is run with values of T set to 1, 3, 5, 10 and
15. The obtained results are presented in Table III.

TABLE III
INFLUENCE OF DIFFERENT TEMPERATURE, T , VALUES.

Market Duke
Rank-1 mAP Rank-1 mAP

T = 1 75.06 49.39 15.80 6.60
T = 3 80.29 56.67 27.47 14.60
T = 5 77.55 54.16 29.76 15.56
T = 10 76.69 51.76 28.41 14.96
T = 15 75.95 51.78 28.71 15.20

The performance peaks at lower temperatures. As the goal
is to produce a student network with the same or higher
generalization ability as the teacher network, T = 5 is picked,
due to its higher cross-domain performance.

With T fixed to 5, the λ values of 1, 0.1, 0.01, 0.001 and
0.0001 are tested. Results are presented in Table IV.

TABLE IV
INFLUENCE OF DIFFERENT λ VALUES.

Market Duke
Rank-1 mAP Rank-1 mAP

λ = 1 61.73 33.22 15.66 6.40
λ = 0.1 77.05 52.28 22.58 10.46
λ = 0.01 77.29 53.79 28.14 15.41
λ = 0.001 77.55 54.16 29.76 15.56
λ = 0.0001 77.29 53.37 28.05 14.80

With these two experiments, the combination of the distilla-
tion parameters that ensures the highest cross-domain accuracy
is determined to be T = 5 and λ = 0.001.

MobileNet is now trained on the two datasets through
distillation. The obtained results are reported in Table V.

TABLE V
DISTILLATION ON MARKET-1501 AND DUKEMTMC-REID.

Market Duke
Trained on Rank-1 mAP Rank-1 mAP
Market Teacher (ResNet) 69.51 43.20 27.15 13.18

MobileNet 1.0 distilled 77.55 54.16 29.76 15.56
MobileNet 0.25 distilled 75.12 50.86 24.92 12.51

Duke Teacher (ResNet) 37.0 13.99 64.45 44.12
MobileNet 1.0 distilled 40.97 16.86 70.51 50.52
MobileNet 0.25 distilled 36.88 14.08 65.66 45.40

It can be observed that the student network with α = 1.0
outperforms the teacher network on both datasets. Despite
having similar performance to ResNet when fine-tuned on the
DukeMTMC-reID, MobileNet achieves an improvement in the
two metrics on both datasets when trained with distillation.

The improvement in cross-domain accuracy resulting from
distillation is plotted in Figure 4.

Distillation resulted in MobileNet models that match or even
outperform the teacher network, at a much lower computa-
tional cost: while ResNet needs to perform 4.67×103 GFLOPs
to compute the descriptors for a single image, MobileNet with
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a) Trained on Market b) Trained on Duke

Fig. 4. Cross-domain performance of MobileNet when trained without (blue)
and with distillation (green) from a more powerful model. Distillation resulted
in a higher improvement when trained on the smaller dataset Market-1501.

α = 1.0 and α = 0.25 only perform 762.9 GLOPs and 55.83
GFLOPs, respectively.

Additionally, feature extraction with MobileNet models (∼
0.00263s) is 3 times faster than with ResNet (∼ 0.00658s),
when computed with batches containing a single image on a
Nvidia GTX1070 card.

The same trend was observed with smaller datasets but
results were not as relevant and due to space limitations were
not included.

V. CONCLUSIONS

This paper proposes a method to train a faster person re-
identification model via distillation. Different data augmenta-
tion techniques were studied to counter the small dimensions
of the datasets. In the end, the model achieves the same
performance as the more complex teacher model, being 3 times
faster during inference.

The key outcomes are: 1) distillation allows a simpler ar-
chitecture to learn a representation on re-identification datasets
as powerful as the one learnt by a more complex architecture,
even outperforming; 2) when presented with data captured
in unseen operation scenarios, its accuracy does not drop as
drastically, improving rank-1 up to 15%.

While this study was focused on the image-based re-ID
problem, the resulting model can still be applied to video-
based re-ID, e.g. using a recurrent network [7].

For future work, semi-supervised learning should be stud-
ied to make use of unlabelled surveillance footage. Current
approaches rely on GANs, however improvements are still
marginal [25].
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