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Abstract—In this paper, new joint eigenvalue decomposition
(JEVD) methods are developed by considering generalized Givens
rotations. These algorithms deal with a set of square complex
matrices sharing a same eigen-structure. Several existing meth-
ods, using or not generalized Givens rotations, have treated the
aforementioned problem. To improve the JEVD solutions, we
developed two methods, the first one is numerically stable and
efficient but relatively expensive. The second one is developed
by considering some justified approximations. Simulation results
are provided to highlight the effectiveness and behaviour of the
proposed techniques for different scenarios.

Index Terms—Complex Joint EigenValue Decomposition
(JEVD), Complex Efficient and Stable Joint eigenvalue Decom-
position algorithm (CESJD), generalized Givens rotations, exact
JEVD, approximative JEVD.

I. INTRODUCTION

In this paper, we mainly propose new algorithms to solve the

Joint EigenValue Decomposition (JEVD) of a set of complex

non-defective matrices based on generalized Givens rotations.

This JEVD problem plays an important role in several appli-

cations such as Canonical Polyadic Decomposition (CPD) of

tensors [1], [2], multi-dimensional harmonic retrieval [3], joint

angle-delay estimation [4], Direction of arrival estimation [5]

and Blind Sources Separation (BSS) [6].

The JEVD problem is widely treated in the literature by

using different schemes. In [7], [8], generalized Givens rota-

tions have been used in the complex case and in [9], the LU

decomposition is used.

The JEVD can be defined by considering K complex square

matrices of dimension N × N sharing the following joint

structure (exact JEVD case):

Mk = ADkA−1 (1)

Where k ∈ {1, ...,K}, K is the number of matrices, N is the

matrix dimension. A is a square non defective matrix (referred

to as mixing matrix in the BSS context) and Dk is the kth

diagonal matrix associated to the kth matrix Mk.

The problem consists of looking for {A,D1, · · · ,DK} by

using only the set of the K complex matrices {M1, · · · ,MK}.

It can be also defined by finding a matrix V which makes

the set of matrices {VM1V−1, · · · ,VMKV−1} as diagonal as

possible specially in the approximate JEVD case (see section

III for more details).

In this paper, we investigate generalized Givens rotations

applied to the JEVD problem. The unknown matrix A is

decomposed in a product of generalized Givens rotations,

according to:

A =
∏

#sweeps

∏
1≤i<j≤N

SijGij (2)

where #sweeps represents the number of iterations, Sij and

Gij are the elementary Shear and Givens rotations, respec-

tively. The problem of JEVD reduces then in the estimation of

these elementary rotations.

II. PROPOSED METHODS

The elementary rotations of equation (2) can be expressed

according to two different schemes. The first one is based

on sinus and hyperbolic sinus which needs some complicated

developments leading to an efficient method. The second

scheme allows appropriate approximations that lead to a com-

putationally simplified method.

A. Complex JEVD method

The first scheme considers elementary rotations that are

equal to the identity matrix except for (i, i)th, (i, j)th, (j, i)th

and (j, j)th entries which are:[
Gij(i, i) Gij(i, j)
Gij(j, i) Gij(j, j)

]
=

[
cos(θ) e−jϕ sin(θ)

−ejϕ sin(θ) cos(θ)

]

(3)[
Sij(i, i) Sij(i, j)
Sij(j, i) Sij(j, j)

]
=

[
cosh(y) ejα sinh(y)

e−jα sinh(y) cosh(y)

]

(4)

θ and ϕ are the Givens rotation parameters while y and α
represent the Shear rotations parameters.

The objective of this subsection is to generalize the method

proposed in [10] to the complex case. Hence, only the Shear

rotation is studied where the Givens rotation is obtained by

applying the solution given in [6].
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Let us study the transformed matrices by the Shear transform.

Each kth transformed matrix is

M′
k ← Sij(−y, α)MkSij(y, α)

Where only ith, jth rows and columns are affected by the

Shear transformation. Modified entries can be written as:

M ′
k(i, j)e

−jα = Mk(i,j)e
−jα+Mk(j,i)e

jα

2

+Mk(i,j)e
−jα−Mk(j,i)e

jα

2 cosh(2y)

+Mk(i,i)−Mk(j,j)
2 sinh(2y)

(5)

M ′
k(j, i)e

jα = Mk(i,j)e
−jα+Mk(j,i)e

jα

2

−Mk(i,j)e
−jα−Mk(j,i)e

jα

2 cosh(2y)

−Mk(i,i)−Mk(j,j)
2 sinh(2y)

(6)

M ′
k(l, i) = Mk(l, i) cosh(y) +Mk(l, j)e

−jα sinh(y)
M ′

k(l, j) = Mk(l, i)e
jα sinh(y) +Mk(l, j) cosh(y)

M ′
k(i, l) = Mk(i, l) cosh(y)−Mk(j, l)e

jα sinh(y)
M ′

k(j, l) = −Mk(i, l)e
−jα sinh(y) +Mk(i, j) cosh(y)

(7)

Minimizing the sum of square modulus of the off-diagonal

entries of matrices M′
k, k = 1, · · · ,K is equivalent to

minimizing the following criterion

CT (y, α) = C1(y, α) + C2(y, α) (8)

where the first term, C1(y, α) corresponds to the (i, j)th and

(j, i)th entries as

C1(y, α) =
∑K

k=1 |M ′
k(i, j)|2 + |M ′

k(j, i)|2
=

∑K
k=1 |M ′

k(i, j)e
−jα|2 + |M ′

k(j, i)e
jα|2 (9)

And the second term, C2(y, α), contains the others entries

affected by the Shear rotation.

C2(y, α) =
∑K

k=1

∑N
l=1,l �=i,j |M ′

k(i, l)|2 + |M ′
k(j, l)|2+

|M ′
k(l, i)|2 + |M ′

k(l, i)|2
(10)

Some workouts of the two above equations leads to:

C1(y, α) = vT Q(α)v + β1

C2(y, α) = vT g(α) + β2
(11)

Where

v =

[
cosh 2y
sinh 2y

]
(12)

and

Q(α) = � [
C(α)HC(α)

]

C(α) =

⎡
⎢⎢⎣

M1(i,j)e
−jα−M1(j,i)e

jα

2
M1(i,i)−M1(j,j)

2
...

...
MK(i,j)e−jα−MK(j,i)ejα

2
MK(i,i)−MK(j,j)

2

⎤
⎥⎥⎦
(13)

and

g(α) =
∑K

k=1

∑N
l=1,l �=i,j[ |Mk(i, l)|2 + |Mk(j, l)|2 + |Mk(l, i)|2 + |Mk(l, i)|2

2� (
Mk(l, i)M̄k(l, j)e

jα +Mk(i, l)M̄k(j, l)e
−jα

) ]

(14)

β1 and β2 are constants independent from considered Shear

rotation parameter. The notation ā denotes the complex con-

jugate of a.

Note that, minimizing (8) has no closed form solution. So,

we tried several methods to get optimal parameters (y, α) and

found out that a robust manner to do it is to introduce two

rotations the real and imaginary rotations. Where in the real

one (resp. imaginary one), α is set to zero (resp. π
2 ).

For a fixed α value, the problem can be summarized as an

optimization under constraint problem:{
vT Q(α)v + vT g(α) (α = 0 or π

2 ).
vT Jv = 1 and v(1) > 0

(15)

and J =

[
1 0
0 −1

]
. The solution to this problem is treated

in [7], [8], [11] and we have opted for the iterative scheme

given in [10].

This iterative scheme can be summarized as a constrained

minimization problem with the following Lagrangian.

L (v, λ) = vT Q(α)v + λ
(
vT Jv − 1

)
+ vT g(α) (16)

where λ is the Lagrangian factor.

To get this iterative scheme, the Lagrangian is derived with

respect to λ and v. Then, the following equations are obtained:

λ = vT Q(α)v + vT g(α)

and

v = −1

2
(Q(α) + λJ)−1 g(α)

The initialization is done by computing the solution of v given

in [8]. The rest of iterations is summarized in Table I.

TABLE I
ITERATIVE FUNCTION TO GET OPTIMAL SHEAR PARAMETER v

Require : Q(α), g(α), Nmax, μ and τ
Initialization: v1 is the generalized eigenvector of
the positive eigenvalue associated to (Q, J).
vn ← v1, n ← 1.
If ‖g‖ > μ Then v ← vn and exit function.
Cr = τ + 1
while Cr > τ and n < Nmax

λ ← vTnQ(α)vn + vTn g(α) .

vt ← − 1
2
[Q(α) + λJ]−1 g(α) .

Cr ← ‖vt − vn‖
vn ← vt, n ← n+ 1

end while.
if vn(1) < 0 Then v ← −vn

Else v ← vn
End if

The overall algorithm can be summarized as follows. Once

the target complex matrices are given, the algorithm applies

an iterative scheme to get the matrix V which is the inverse of

the matrix A given in equation (1). Each iteration is realized

by successive unitary and Shear transformations. The unitary

transformation is obtained by using the solution given in [6].
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The latter, G(θ, ϕ), is used to update the matrices according

to:
V ← VG(θ, ϕ)

Mk ← G(θ, ϕ)HMkG(θ, ϕ)
(17)

Once done, the Shear transformation is realized by consider-

ing two rotations. The first one is called real rotation by setting

the value of α to zero. The second rotation called imaginary

one sets the value of α to π
2 . The real rotation (resp. the

imaginary rotation) starts by computing Q(0) and g(0) (resp.

Q(π2 ) and g(π2 )). Hence, the optimal value of v is obtained

by applying the iterative function given in Table I using Q(0)
and g(0) (resp. Q(π2 ) and g(π2 )). Once optimal v is obtained,

Shear parameters are estimated by:⎧⎨
⎩

cosh(y) =
√

1
2 (v(1)− 1)

sinh(y) = v(2)
2 cosh(y)

(18)

Next, the real (resp. the imaginary) rotation is completely

defined as S(y, 0) (resp. S(y, π
2 )) and, the matrix update

process is realized as follows:

V ← VS(α, y)
Mk ← S(α,−y)MkS(α, y) (19)

where α is set to zero (resp. π
2 ) in real (resp. imaginary) rota-

tion. Finally, the developed algorithm, referred to as Complex

Efficient and numerically Stable Joint eigenvalue Decomposi-

tion (CESJD), is given in Table II.

TABLE II
CESJD ALGORITHM

Require : Mk, k = 1, · · · ,K, fixed threshold τ
and maximum sweep number Mit.

Initialization: V = IN and A = IN .
while maxi,j(|y| , |θ|) > τ and (#sweeps < Mit)

for all 1 ≤ i < j ≤ N
Unitary transform

Estimate Gij(θ, ϕ) using solution given in [6].
Updates matrices V,Mk using equation (17).

Real Shear transform
Compute Q(0) and g(0) using equations (13) and (14).
Estimate optimal v using function given in Table I.
Compute Shear parameter using equation (18).
Matrices updates using equation (19)

Imaginary Shear transform
Compute Q(π

2
) and g(π

2
) using equations (13) and (14).

Estimate optimal v using function given in Table I.
Compute Shear parameter using equation (18).
Matrices updates using equation (19)

end for
end while.

B. The simplified complex JEVD method

In this simplified method, another form of the elementary

rotations is considered. Shear and Givens rotations are equal

to the identity matrix except for some entries which are given

by: [
Gij(i, i) Gij(i, j)
Gij(j, i) Gij(j, j)

]
= λθ

[
1 θ̄
−θ 1

]
(20)

[
Sij(i, i) Sij(i, j)
Sij(j, i) Sij(j, j)

]
= λy

[
1 ȳ
y 1

]
(21)

In this second scheme, θ and y are complex numbers associated

to Givens and Shear parameters, respectively. λθ = 1√
1+|θ|2

and λy = 1√
1−|y|2 . In order to simplify the matrix notation, we

introduced Hij(θ, y) as product of Shear and Givens rotation

(Hij(θ, y) = Sij(y)Gij(θ)).
To our best knowledge, these parameters are estimated

separately like in subsection II-A and [7], [8], [11]. Hence, the

simplified method estimates both parameters simultaneously by

considering particular approximations.

For that, let’s consider M′′
k a kth matrix affected by a gener-

alized Givens transformation Hij(θ, y).

M′′
k ← Hij(θ, y)MkHij(−θ,−y) k ∈ {1, · · · ,K} (22)

Entries of M′′
k , twice affected by the elementary rotation, can

be expressed as follows:

M ′′
k (i, j) = λ2

θλ
2
y

(
Mk(i, j) + [Mk(j, j)−Mk(i, i)] (θ̄ + ȳ)
−Mk(j, i)(θ̄

2 + ȳ2)− 2Mk(i, j)θȳ

+ [Mk(j, j)−Mk(i, i)]
(
ȳ2θ + |θ|2 ȳ

)
+Mk(i, j)θ

2ȳ2 − 2Mk(j, i)θ̄ȳ
)

(23)
M ′′

k (j, i) = λ2
θλ

2
y (Mk(j, i) + [Mk(j, j)−Mk(i, i)] (θ − y)

−Mk(i, j)(θ
2 + y2) + 2Mk(j, i)yθ̄

+ [Mk(j, j)−Mk(i, i)]
(
y2θ̄ + y |θ|2

)
+Mk(j, i)θ̄

2y2 + 2Mk(j, i)yθ̄
)

(24)

Assuming that we are close enough to the diagonalizing

solution, then both magnitudes of θ and y can be considered

very small. Hence, higher order of the latter parameters can be

neglected in equations (23) and (24). Therefore, the first order

approximation is as follows:

M ′′
k (i, j) ≈ Mk(i, j) + [Mk(j, j)−Mk(i, i)] (θ̄ + ȳ)

M ′′
k (j, i) ≈ Mk(j, i) + [Mk(j, j)−Mk(i, i)] (θ − y)

(25)

Next, these approximated entries will be used to derive

the optimal generalized Givens parameters θ, y. The second

introduced approximation is the simplified criterion where only

entries twice affected by the generalized Givens rotation are

considered according to [10].

Cs(θ, y) =
K∑

k=1

|M ′′
k (i, j)|2 + |M ′′

k (j, i)|2 (26)

Let us introduce the following notations:

β′ =
[
M ′′

1 (i, j) · · · M ′′
K(i, j)

] ≈ β +wHCa1 (27)

γ′ =
[
M ′′

1 (j, i) · · · M ′′
K(j, i)

]T ≈ γ +Ca2w (28)

where γ =
[
M1(i, j) · · · MK(i, j)

]T
,

β =
[
M1(i, j) · · · MK(i, j)

]
, w =

[
θ y

]T
,

Ca1 =

[
M1(j, j)−M1(i, i) · · · MK(j, j)−MK(i, i)
M1(j, j)−M1(i, i) · · · MK(j, j)−MK(i, i)

]
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and Ca2 =

⎡
⎢⎣

M1(j, j)−M1(i, i) M1(i, i)−M1(j, j)
...

...

MK(j, j)−MK(i, i) MK(i, i)−MK(j, j)

⎤
⎥⎦.

Hence, the simplified criterion can be written as

Cs(w) = γ′Hγ′ + β′β′H

= γHγ + ββH +wHga + ga
Hw +wHQaw

(29)

where

ga = Ca1β
H +Ca2

Hγ (30)

and

Qa = Ca1Ca1
H +Ca2

HCa2 (31)

The optimization task is realized by annulling the derivation

with respect to the complex vector wH . ∂Cs

∂wH = 0 ⇒ ga +
Qaw = 0 Then, the optimal value of w is expressed as

wopt = −Qa
−1ga (32)

TABLE III
SIMPLE JOINT DIAGONALIZATION ALGORITHM (SJD)

Require : Mk, k = 1, · · · ,K, fixed threshold τ
and maximum sweep number Mit.

Initialization: V = IN and A = IN .
while maxi,j(|y| , |θ|) > τ and (#sweeps < Mit)

for all 1 ≤ i < j ≤ N
Compute Qa and ga using equations (30) and (31).

Estimate wopt ← Qa
−1ga .

Construct Hij(θ, y) using (20) and (21).
Up date different matrices as:
Mk ← Hij(θ, y)MkHij(−θ,−y)
V ← Hij(θ, y)V
A ← AHij(−θ,−y)

end for
end while.

The overall proposed algorithm, named Simplified Joint

Diagonalization algorithm (SJD), is summarized in Table III.

III. SIMULATION, RESULTS AND DISCUSSIONS

In this section, we have tested the proposed algorithms and

compared with respect to JDTM given in [8] for different

scenarios. In the first scenario, the complex matrices to be

tested satisfy exactly relation (1), this scenario is referred to

as exact JEVD case. The aim of this simulation is to observe

each algorithms’ convergence rate.

In the second scenario, the complex matrices satisfy approxi-

matively relation (1) leading to the approximative JEVD case.

The aim of this scenario is to compare algorithms’ robustness

in case of noise corrupted data.

Another algorithm is constructed by combining the CESJD and

SJD. This algorithm, referred to as Hybrid, uses three sweeps

of CESJD (to get close enough to the desired solution) and

continues the sweeps by using SJD.

The Performance Index (PI) used here is the same as in

[7], [12] evaluated over 100 Monte-Carlo realisations. This PI

defined as

PI (T) = 1
2N(N−1)

∑N
n=1

(∑N
m=1

|T (n,m)|2
maxk|T (n,k)|2 − 1

)
+

1
2N(N−1)

∑N
n=1

(∑N
m=1

|T (m,n)|2
maxk|T (k,n)|2 − 1

)
(33)

where T = V̂A is the global matrix. The closer the PI is to

zero the better is the JEVD quality.

A. Exact JEVD case

In this case, all matrices A and {Dk}k=1,...,K are generated

by considering complex, independent and normal distribution

for all entries. Then, the complex matrices {Mk}k=1,...,K are

computed by considering equation (1). The different algo-

rithms are applied to these matrices to estimate the JEVD.

We have considered the JEVD of three matrices (which

means that K = 3) and variate the matrix dimension N . N
takes the following values {5, 50, 20, 50}. The obtained results

are given in Figure 1. Note that as the ratio K
N decreases, the

convergence rate of different algorithms decreases. However,

the considered algorithms are differently affected by decreasing
K
N . CESJD and Hybrid are the less affected algorithms and

present the best convergence rates especially in the difficult

case (K = 3 and N = 50). The JDTM algorithm, as shown

in Figures 1d and 2d, diverges completely when the ratio K
N

is less than 6% due to the approximated criterion considered

by this algorithm as explained in [10]. Our proposed SJD

starts to diverge when the ratio K
N is less than 30%. This is

due to the approximations introduced while developing SJD.

Again JDTM, we have used two approximations, the first one

is inside the considered criterion and the second one is in

the generalized Givens rotations where only the first order is

kept and other ones are neglected. Hence, SJD can be used in

simple cases of JEVD where the ratio have to be higher than

30%. The JUST algorithm, as explained in [10], suffers from

numerical instability which can be observed in Figure 1c and

1d. The other proposed algorithms CESJD and Hybrid are still

converging fast especially in difficult cases (when the ratio K
N

is less than 6% in our context). CESJD has a high computation

complexity but ensures faster convergence. For that, we have

combined it with SJD to construct Hybrid algorithm in order

to get an acceptable trade-off between convergence rate and

computation complexity.

B. Approximative JEVD case

In this scenario, the complex matrices satisfy approxima-

tively the equation given in (1) as: Mk = ADkA−1+Ξk where

Ξk is a noise matrix. The level or perturbation level (PL) is

measured by: PL(dB) =
‖ADkA−1‖

F

‖Ξk‖F
. The noise matrix Ξk

is generated as Ξk = �kΥk where Υk is a random matrix

(generated at each Monte Carlo run) and �k is a positive

number allowing to fix the perturbation level, i.e. a kind of

target SNR.

Algorithms’ performance are evaluated according to the PL
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Fig. 1. Mean PI versus sweep number in exact JEVD for different matrix dimensions
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Fig. 2. Median PI versus perturbation level in approximate JEVD

for different K
N ratios. Obtained results are given in Figure 2

where PI versus PL curves are drawn. In simple cases i.e. ratio
K
N is greater than 30%, all algorithms reach approximatively

the same performance as it can be seen in Figures 2a and 2b.

The convergence problem of SJD can be observed in Figures

2c and 2d and same remark is observed for JDTM algorithm

in Figure 2d. On the other hand, CESJD and Hybrid are still

reaching same good results especially in difficult cases where
K
N is less than 6%.

IV. CONCLUSION

In this paper, the JEVD problem is considered in the

complex case. We have proposed two new algorithms based

on generalized Givens rotations. The first one, referred to as

CESJD, reaches the best results in term of convergence rate

and robustness against noise but is relatively expensive. The

second one, referred to as SJD, uses some justified approxi-

mations leading to a simple and low computational complexity

algorithm with some convergence problem in difficult JEVD

cases. The Hybrid method is constructed by combining both

proposed methods in order to get an acceptable trade-off

between convergence rate and computational complexity.
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