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Abstract—A concurrent speaker direction of arrival (DOA)
estimator in a reverberant environment is presented. The re-
verberation phenomenon, if not properly addressed, is known
to degrade the performance of DOA estimators. In this paper,
we investigate a variational Bayesian (VB) inference framework
for clustering time-frequency (TF) bins to candidate angles. The
received microphone signals are modelled as a sum of anechoic
speech and the reverberation component. Our model relies on
Gaussian prior for the speech signal and Gamma prior for
the speech precision. The noise covariance matrix is modelled
by a time-invariant full-rank coherence matrix multiplied by
time-varying gain with Gamma prior as well. The benefits of
the presented model are verified in a simulation study using
measured room impulse responses.

Index Terms—DOA estimation, Variational Bayes inference,
Variational Expectation-Maximization

I. INTRODUCTION

Estimation of the DOAs of sound sources is a fundamental
problem in signal processing for several decades. In acoustic
enclosures, the signal acquired by the microphone array is
usually distorted by reverberation, a result of the multiple
sound reflections on the room facets and objects, as well
as contaminated by noise. These phenomena, if not treated
properly, may cause a severe degradation in the estimation
accuracy of the DOA. DOA is often estimated by employing
time difference of arrival (TDOA) estimator as a preliminary
stage. A classical approach for estimating the TDOA between
two observed speech signals is by cross-correlation, most com-
monly its normalized version, the generalized cross correlation
(GCC) [1] with phase transform (PHAT) normalization. A
generalization of the GCC-PHAT to microphone arrays in far-
field scenarios is the steered response power (SRP)-PHAT [2].

The coexistence of multiple speakers in the same (rever-
berant) environment may further degrade the performance.
Hence, the problem of multiple DOA estimation has been
the focus of recent research efforts. In the model-based EM
source separation and localization (MESSL) approach [3], [4],
the authors use the Expectation-Maximization (EM) procedure
for Mixture of Gaussians (MoG) clustering of the TDOAs of
multiple speakers, considering the two microphone (binaural)
case, and using the W-disjoint property of speech signals [5].
In the E-step, a time-frequency mask, associating each TF
bin to a specific Gaussian, is estimated. In the M-step the
mixture weights are estimated, using the number of asso-
ciations of TF bins. The final DOA estimates are selected
by choosing the most probable Gaussians. A generalization

of [4] is presented in [6], by estimating the speakers co-
ordinates rather than their DOAs. This approach uses the
phase ratios between the signals received by microphone pairs.
Additionally, efficient tracking algorithms for multiple moving
speakers are presented. Another MoG-based approach directly
uses the speech spectrogram with explicit modelling of the
reverberation properties [7]. While the mean of the Gaussians
is zero, the covariance-matrices of the Gaussians comprise an
explicit spatial modelling of the speech and the reverberation
[8]. Variant of this work is proposed in [9] with special
treatment to the additive noise.

In the current work, we consider VB methodology, to apply
a grid-based MoG clustering directly to the short-time Fourier
transform (STFT) of the microphone signals. We introduce a
Bayesian modelling with appropriate conjugate priors to the
all problem parameters, including explicit treatment of the
reverberation phenomenon. Iterative variational expectation-
maximization (VEM) algorithm is then developed for esti-
mating the model parameters. In the E-step the posterior
distributions of the inferred parameters are calculated given
the observations, and in the M-step the hyper-parameters
are computed given these posterior distributions. A Bayesian
variant of the MESSL technique was already studied in the
literature [10]. In this approach, VB is used to cluster TF bins
by associating their interaural phase differences (IPDs) with a
candidate TDOA, in order to preform separation. The model
does not take into account the reverberation phenomenon.

II. PROBLEM FORMULATION

A. Signal model

The proposed model is formulated in the STFT domain,
where k = 0, . . . ,K − 1 denotes the frequency band and
t = 0, . . . , T−1 denotes the time frame. Consider an arbitrary
scenario with J unknown speakers and N microphones in
noiseless environment. Let zn(t, k) be the signals received by
the nth microphone, with n = 1, . . . , N :

zn(t, k) =
J∑
i=1

gj,n(k)sj(t, k) + rj,n (1)

where sj(t, k) denotes the anechoic speech signal of the jth
speaker, which is modelled as a zero-mean Gaussian process
with time-varying precision

p(Sj(t, k)|τj(t, k)) = Nc(Sj(t, k); 0, τ−1j (t, k)),
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gj,n(k) denotes the relative direct transfer function (RDTF)
from the jth speaker to the nth microphone w.r.t. the reference
microphone (the first microphone is arbitrarily chosen), and
rj,n denotes the reverberation tail associated with the jth
speaker. Concatenating all channels in a vector we obtain:

z(t, k) =
J∑
i=1

gj(k)sj(t, k) + rj(t, k)

where

z(t, k) = [z1(t, k), . . . , zN (t, k)]T

gj(k) = [gj,1(t, k), . . . , gj,N (t, k)]T

rj(t, k) = [rj,1(t, k), . . . , rj,N (t, k)]T .

For a linear array and under far-field regime, the RDTF can
be expressed as gj,n(k) = exp(−i 2πK

ξj,n
Ts

), where i =
√
−1,

Ts denotes the sampling time and ξj,n denotes the TDOA,
associated with the jth speaker, between the nth microphone
and the reference microphone. The TDOA can be expressed
as ξj,n =

dn cosϑj

c , where c is the sound velocity, dn is
the distance between the nth microphone and the reference
microphone, and ϑj is the angle of arrival of the jth speaker.

B. Statistical Model

The core idea of the proposed method, inspired by [4],
is to define a set of candidate angles and to determine the
probability of the measured source signals to impinge the array
from the candidate angles. Note that this strategy will yield an
indirect estimate of the DOA, by selecting the proper peaks
of the estimated probability map. The various speakers are
assumed to exhibit a disjoint activity in the STFT domain [5].
Therefore, by means of clustering, each TF bin of z(t, k) can
be associated with only a single active source. Hence, based
on the above arguments, the observations can be described in
the following probabilistic MoG description:

z(t, k) ∼
M∑
m=1

ψmNc(z(t, k); s(m, t, k)gm(k);φr(m, t, k))

(2)
where ψm is the probability of a speaker to impinge the array
from a candidate angle ϑm, with M being the total number of
candidate angles. s(m, t, k) is now the speech signal, similarly
to II-A, but with an association to candidate angle ϑm. Note,
that by our model, the J sources can be located in any of the
M angles, assuming M > J . The RDTF gm(k) is accordingly
defined as the candidate source DOA and ϑm its respective
angle. Note the differences between gm(k) and ϑm with
m = 1, . . . ,M , which are defined per candidate angle, and
the corresponding quantities gj(k) and ϑj with j = 1, . . . , J ,
which are defined per actual source.

We further assume that the spatial covariance matrix of
the reverberation term φr(m, t, k) can be decomposed to a
time-invariant spatial coherence matrix multiplied by a time-
varying power. This can be justified if the source-microphone
constellation is fixed. It is common to assume that the rever-
beration is spatially homogeneous and spherically isotropic

sound-field, hence φr(m, t, k)) = β−1(m, t, k)Γ(k), with
Γij(k) =sinc

(
2πk
K

di,j
Tsc

)
+ εδ(i − j), where sinc(x) = sin(x)

x ,
di,j is the inter-distance between the array elements and ε
is a known diagonal loading representing uncorrelated spatial
noise (see e.g. [11]). The inverse of the unknown reverberation
power β(m, t, k) is time-varying and associated with a speaker
located at candidate angle m.

C. Conjugate Priors

In the Bayesian framework, it is common to introduce
probabilistic priors over the latent variables to account for the
model uncertainty. For the exponential family of distributions,
choosing the so-called, conjugate priors leads to a posterior
distribution with the same functional form as the original
distribution and therefore to a simplified Bayesian analysis. In
the Bayesian framework, it is often more convenient to work
with precisions rather than variances [12]. We therefore first
introduce prior distributions to the precision of the speaker and
the reverberation signals. The conjugate prior of the precision
of a univariate Gaussian is the Gamma probability [12]. Hence,
the prior of the speech precision is given by:

p(τ(m, t, k)) = Gam(τ(m, t, k); b0(m, t, k), c0(m, t, k)).
(3)

Each TF bin in candidate angle ϑm is modelled with a unique
shape, to allow more flexibility in the modelling of the speech
characteristics. Similarly, we also assume Gamma distribution
as the prior of the reverberation precision:

p(β(m, t, k)) = Gam(β(m, t, k); d0(m, t, k), e0(m, t, k)).
(4)

Finally, we choose the prior distribution for the MoG weights
ψ = {ψm}Mm=1 to be the Dirichlet distribution:

p(ψ) = Dir(ψ|α) (5)

where the hyper-parameters α = vecm{αm} can be inter-
preted as the effective prior number of observations associated
with each component of the mixture.

III. VARIATIONAL EM FOR DOA ESTIMATION

In this section, a VEM procedure for estimating the DOAs
of all sources is derived. In this work, we define a hidden
variable x(m, t, k) to be an indicator that TF bin (t, k) is
associated with a speaker located at candidate angle ϑm, in
accordance with the W-disjoint property of speech signals. The
total number of indicators is M × T ×K.

Define the augmented observations and parameters for all
TF bins and angles as:

Z = vect,k{z(t, k)} x = vecm,t,k{x(m, t, k)}
s = vecm,t,k{s(m, t, k)} τ = vecm,t,k{τ(m, t, k)}

ψ = vecm{ψm} β = vecm,t,k{β(m, t, k)}
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Then, one can express the conditional probabilities as [12]:

p(Z|x, s,β) =

M,T,K∏
m,t,k

· · ·

Nc(z(t, k); s(m, t, k)gm(k), β−1(m, t, k)Γ(k))x(m,t,k) (6)

with

p(x|ψ) =

M,T,K∏
m,t,k

ψm
x(m,t,k) (7)

where it is assumed that the observations for all time segments
and all frequency bins are mutually independent.

Finally, define the hidden variables of the problem H =
{x, s, τ ,β,ψ} and its hyper-parameters:

θ = {αm, b0(m, t, k), c0(m, t, k), · · ·
e0(m, t, k), d0(m, t, k)}M,T,K

m,t,k=1 . (8)

The VB inference necessitates the calculation of the posterior
distribution p(H|Z;θ) = p(Z,H;θ)

p(Z;θ . Applying Bayes rule, the
p.d.f. of the complete data can be expressed as:

p(Z,H;θ) = p(Z|x, s,β)p(x|ψ)p(ψ)p(s|τ )p(τ )p(β). (9)

However, the likelihood p(Z;θ) =
∫
p(Z,H;θ)dH can-

not be evaluated in closed-form, hence neither the posterior
p(H|Z;θ) can be inferred. To alleviate this problem, we adopt
the variational inference framework, in which the posterior
p(H|Z;θ) is approximated by q(H) that can be decomposed
into conditionally independent variables in accordance with
the mean field theorem [12]:

q(H) ≈ q(x)q(s)q(τ )q(β)q(ψ). (10)

Given the factorization of q(H) over a partition of the hidden
variables, the optimal marginal posterior distribution over a
subset H` ⊆ H can be computed in the E-step by:

ln q(H`) = Eq(H/H`) {ln p(Z,H;θ)}+ const (11)

where q(H/H`) is the approximation of the joint poste-
rior distribution of all hidden variables but the subset H`.
Subsequently, q(H) can be inferred for each H` ⊆ H.
Once the posterior distributions of all variables in H are
obtained, the log-likelihood of the complete data, L(θ) =
Eq(H) {ln p(Z,H;θ)}, can be maximized w.r.t. the hyper-
parameters in the M-step.

A detailed derivation of the algorithm is omitted due to
space constraints and we only provide the final results and
their interpretations. In the following, the time index t and
the frequency index k are omitted for brevity whenever no
ambiguity arises.

A. E-x Step
The approximate posterior distribution of the indicator can

be computed from (9) and (11) by only keeping terms involv-
ing x:

q(x) ∝ Eq(ψψψ){ln p(x|ψψψ)}+ Eq(s),q(βββ){ln p(Z|x, s,βββ)}.
(12)

Following a few mathematical transitions, the above distribu-
tion can be expressed as:

q(x) =

M,T,K∏
m,t,k=1

r
x(m,t,k)
mtk . (13)

It is evident that the posterior factor q(x) takes the same
functional form as the prior p(x|ψ), where

rmtk =
ρmtk∑M

m′=1 ρm′tk

and ln ρmtk is given by:

ln ρmtk = l̂nψm − β̂(m) +
∣∣Γ−1∣∣−N ln(π)− · · ·[

zβ̂(m)Γ−1z− zH β̂(m)Γ−1(k)gmŝ(m)− · · ·

ŝHgHmβ̂(m)Γ−1z + ̂|s(m)|2gHmβ̂(m)Γ−1gm
]
.

The variables β̂, ŝ, |̂s|2 and l̂nψ are posterior expectations that
will be presented in the following sections. Note that since
ρmtk is given by the exponential of a real variable, rmtk are
always non-negative. Moreover, it can be easily verified that
they sum to one, as required. Using the above distribution, the
expected value of the indicator at the candidate angle m is
E{x(m, t, k)} = rmtk, and hence rmtk can be regarded as an
estimated (soft) indicator.

B. E-ψ Step

The posterior expectation of the mixing coefficients ψψψ can
be determined in a similar way:

ln q(ψψψ) = Eq(x){ln p(x|ψψψ)}+ Eq(x){ln p(ψψψ)}. (14)

It can be shown that the posterior q(ψψψ) is Dirichlet distributed
with a parameter αpost

m (associated with candidate angle m)
given by:

αpost
m = αm +Rm (15)

where Rm =
∑T,K
t,k=1 rmtk is the accumulated indicator. Since

rmtk can be interpreted as a soft indicator, Rm will tend to
be high if a speaker is located at angle m. In the absence of
informative prior on the speakers’ DOAs, the hyper-parameter
αm equally contributes to all candidate angles, hence the
parameter of the posterior q(ψψψ) will be determined by Rm.
Using this posterior, ψ̂m is given by E{ψm} =

αpost
m

αpost with
αpost =

∑M
m=1 α

post
m . Note that ψ̂m is a map of the MoG

weights which will ultimately used to extract the number of
speakers in the scene and their location. Finally, l̂nψm, used
in (14), is given by E{lnψm} = Ψ(αpost

m )−Ψ(αpost) with Ψ
the diaggma function.

C. E-s Step

The speech posterior is also calculated with the VB proce-
dure, using (9) and (11):

ln q(s) = Eq(x)q(βββ){ln p(Z|x, s,βββ)}+ Eq(τττ){ln p(s|τττ)}
(16)
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which yields a product of Gaussian distributions
q(s) =

∏M,T,K
m,t,k=1Nc(s(m); ŝ(m),Σs(m)), with the

candidate-dependent means and covariance matrices:

ŝ(m) =
zH β̂(m)Γ−1gmrmtk

τ̂(m) + gHmβ̂Γ−1gmrmtk
(17)

Σs(m) =
(
τ̂(m) + gHmβ̂(m)Γ−1gmrmtk

)−1
. (18)

The mean of the mth Gaussian ŝ(m) corresponds to the
multichannel Wiener filter (MCWF) [13], multiplied by the
estimated indicator. If the measurement is strongly associated
with the mth candidate angle, then rmtk → 1. If the associ-
ation is weak, namely rmtk → 0, the minimum mean square
error (MMSE) of the signal tends towards 0. Interestingly,
the variance in this case tends to τ̂−1(m), which is the
largest possible error variance in optimal filtering, rendering
the contribution of this Gaussian to the product negligible.

D. E-τ Step
Using (9) and (11), the posterior distribution of the speech

precision can be written as:

ln q(τ ) = lnEq(s){p(s|τ )}+ ln p(τ ) (19)

which can be shown to be a Gamma distribution (similar in
form to the prior distribution p(τ )):

M,T,K∏
m,t,k=1

Gam(τ(m); bp(m), cp(m))

with

bp(m) = b0(m) + 1, cp(m) = c0(m) + ̂|s(m)|2 (20)

where, ̂|s(m)|2 = Σs(m)+|ŝ(m)|2. An estimate of the speech
precision for candidate angle m can be easily obtained from
the posterior:

τ̂(m) =
bp
cp

=
b0(m) + 1

c0(m) + ̂|s(m)|2
. (21)

where b0(m), c0(m) are the prior hyper-parameters which will
be updated in the M-step. Modelling the speech precision as a
deterministic variable, a point estimate is obtained: τ̂D(m) =

1/ ̂|s(m)|2 [13]. It is useful to clarify that both estimators τ̂(m)
and τ̂D(m) are equivalent when the hyper-parameters tend to
zero, namely b0(m) = c0(m)→ 0, which corresponds to non-
informative prior.

E. E-β Step
The posterior distribution of the reverberation precision can

be extracted from:

ln q(β) = lnEq(s)q(x){p(Z|x, s,βββ}+ ln p(βββ) (22)

and is given by
∏M,T,K
m,t,k=1 Gam(β(m); dp(m), ep(m)) with

parameters dp(m) = d0(m) + rmtk and

ep(m) = e0(m) + rmtk
(
zHΓ−1z

− zHΓ−1gmŝ− ŝHgHmΓ−1z + ̂|s(m)|2gHmΓ−1gm
)
. (23)

An estimate of the reverberation precision is then obtained
from the posterior mean:

β̂(m) =
dp
ep

=
d0(m) + rmtk

ep(m)
. (24)

Modelling the reverberation power as a deterministic parame-
ter, the following point estimator is obtained:

β̂−1D (m) = zHΓ−1z

− zHΓ−1gmŝ− ŝHgHmΓ−1z + ̂|s(m)|2gHmΓ−1gm. (25)

Note that since ep(m) = e0(m)+ rmtkβ̂
−1
D (m), the following

relation between the Bayesian and deterministic estimates is
obtained:

β̂(m) =
d0(m) + rmtk

e0(m) + rmtkβ̂
−1
D (m)

.

It is easy to verify that in the limit e0(m), d0(m) → 0, both
estimators identify, namely β̂(m) = β̂D(m).

F. M-Step

Once the posterior distributions of the hidden variables are
calculated, the expected complete-data log likelihood L(θ) =
Eq(H)

{
ln p(Z,H; θ)

}
can maximized w.r.t. the prior parame-

ters. Closed-form expression are available only for the hyper-
parameters of the Gamma priors, i.e. the speech and noise
precisions:

e0(m) =ep(m)
d0(m)

dp(m)
(26)

d0(m) =Ψ−1
(

Ψ(dp(m) + ln
e0(m)

ep(m)

)
c0(m) =cp(m)

b0(m)

bp(m)

b0(m) =Ψ−1
(

Ψ(bp(m) + ln
c0(m)

cp(m)

)
.

No closed-form expression for the hyper-parameters of the
Dirichlet prior α is available, hence we only consider in
this work scenarios with non-informative prior on speakers’
locations, thus choosing αm = 1

M for all candidate angles.

IV. PERFORMANCE ANALYSIS

The performance of the proposed algorithm is evaluated and
compared with baseline methods for the case of two concurrent
speakers.

A. Simulation setup

Anechoic speech signals were convolved with room impulse
responses (RIRs) downloaded from an open-source database
recorded in our lab. Details about this database can be
found in [14]. We selected here two reverberation levels
T60 = {0.16, 0.61} Sec. We further selected the loudspeakers
positioned at various angles on a half-circle with a radius of
2 m. Only a subset of four microphones with inter-distances
{3, 8, 3} cm was used in our experiments. The parameters
of the proposed algorithm are: sampling frequency 16 kHz,
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(a) T60 = 160 ms (b) T60 = 610 ms

Fig. 1: Probabilities vs. DOA for two speakers in two rever-
beration levels.

STFT frame-length 64 ms without overlap, and the number of
frequency bins 1024. Two utterances, approximately 4.5 Sec
long, of both male and female speakers were used. While
applying the algorithm, only the frequencies below 4 kHz were
used. In addition, we used only time-frequency bins for which
P{z(t, k)} > 10−5 × max P{z(t, k)}, where P{z(t, k)} =
1
N zH(t, k)z(t, k) denotes a spatially-averaged power of the
(t, k)th bin. The number of iterations for each TF bin was
set to 20. The angle candidates are confined to the range of
0◦ − 179◦ with 1◦ resolution. The diagonal loading factor ε
was set to 0.5.

The performance of the proposed algorithm was com-
pared with two competing algorithms, the SRP-PHAT [2],
and ‘Schwartz2016 [7]. The outputs of the SRP-PHAT were
normalized to sum to 1, to allow a clear comparison with
the probability curves of the proposed algorithm and of
‘Schwartz2016.

B. DOA estimation performance

In the first set of experiments, we compared the performance
of the three algorithms in reverberant environment with T60 =
610ms, by averaging all possible two speakers’ combinations
in the range 15◦ − 165◦. Since the resolution of the database
is 15◦ we have only 11 angles (altogether 11 × 10 = 110
different two speakers’ combinations). The two DOAs with the
highest probabilities were selected as the estimated DOA. The
minimum absolute error (MAE) was calculated as the average

of all errors between the estimated DOA and the true angle.
In Table I, the MAEs for the various algorithms is presented.

Speaker\Alg. SRP-PHAT Schwartz2016 Proposed

Female 16.58◦ 6.81◦ 5.65◦

Male 19.03◦ 7.46◦ 6.21◦

TABLE I: MAE obtained the three competing algorithms.
Results averaged over 110 possible pairs.

We further examine a specific scenario with two concurrent
speakers, male and female, located at angles 60◦ and 120◦.
This test was repeated for two reverberation levels T60 =
160 ms and T60 = 610 ms. The results are depicted in Fig. 1,
where the weights of the MoG associated with each DOA
is depicted. It is clear that the SRP-PHAT fails to localize
the sources even in the low reverberation conditions. The

‘Schwartz2016’ algorithm exhibits good localization results in
low reverberation conditions. However, in the high reverber-
ation conditions, it fails to distinguish between the speakers.
The proposed algorithm exhibits more robust behaviour and
can clearly distinguish between the speakers in both reverber-
ation conditions.

V. CONCLUSION

A DOA estimator in reverberant environment was presented.
The proposed algorithm uses the VEM framework to cluster
TF bins under a MoG model. It is distinguished from a
previously proposed algorithm [7] by the use of a prior
distribution on the candidate DOAs, as well as the speech
and noise precisions, which are nuisance parameters of the
problem at hand. An experimental study, using real acoustic
impulse responses, demonstrates the improvement obtained
by the proposed algorithm in comparison with two baseline
methods [2], [7].
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