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Abstract—This paper analyzes the channel hardening and
favorable propagation behavior of frequency-selective massive
MIMO channels. To this purpose the concept of favorable
equalization is introduced to characterize the property of the
channel to become frequency flat as the number of antennas
grows when proper pre-filtering is adopted. It is shown that
classic OFDM-based massive MIMO and time-reversal schemes,
usually considered and analyzed as different technologies, are
particular cases of the same framework. Their generalization
leads to the concept of massive waveforming, which allows the
creation of parallel wideband AWGN-like links between the base
station and the users.

I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) is one of
the most promising technologies proposed to boost the multi-
user capacity of cellular networks. The key idea behind
massive MIMO is to considerably increase the number M
of antennas in such a way results from large-number theory
can be successfully exploited, especially in rich multipath
propagation conditions. Specifically, with M sufficiently large,
the equivalent MIMO channel starts showing a deterministic
behavior (channel hardening) and the vector-valued channels
to the users tend to become mutually orthogonal (favorable
propagation) [1]. A rich literature is available regarding the
various aspects associated to massive MIMO networks design,
such as the issue of pilot contamination and the possibility to
adopt it in cell-free networks [2].

Fewer works investigate in detail the behavior of channel
hardening and favorable propagation as a function of M
and network configuration. For instance, [3] first proposes
a distance-from-favorable-propagation measure defined as the
gap between the sum-capacity and the maximum capacity
obtained under favorable propagation. Secondly, it analyzes
the rate of convergence of the channel to the favorable
condition for two extreme scenarios: independent, identically
distributed (i.i.d.) Rayleigh fading and uniform line-of-sight
(LOS), showing a convergence rate of M .

The spatial filtering capability of massive MIMO in con-
centrated and distributed antenna scenarios is analyzed in [4].
Sufficient conditions for interference suppression in large M
regime are provided based on the evaluation of the average
signal-to-interference ratio using the classic Clarke’s channel
model.

In [5], authors compare channel hardening and favorable
propagation in cell-based and cell-free networks. The main
result is that better channel hardening can be obtained with
few base stations (BSs) equipped with many antennas than

with many BSs employing few antennas, at the expense of
decreased diversity. Authors highlight that, since both channel
hardening and favorable propagation are local characteristics,
i.e., related only to short-term channel variations, when ana-
lyzing the system at network level (accounting for large-scale
channel variations), the cumulative distribution function (CDF)
of channel hardening and favorable propagation appears to be
a more appropriate performance measure.

In all previous works channel hardening and favorable
propagation have been addressed by considering narrowband
propagation by having in mind single subcarrier (or resource
block) in orthogonal frequency division multiplexing (OFDM)
transmission. In most cases the Rayleigh statistical character-
ization has been used by assumption supposing a very rich
scattering environment.

Frequency-selective massive MIMO is a less investigated
topic. Early works, e.g., [6], investigated the possibility to
employ a single-carrier transmission in large-scale antenna
systems under wideband uncorrelated Rayleigh fading show-
ing that the achievable sum-rate is near optimal at low signal-
to-noise ratio and large M .

In this direction, our paper analyzes more in detail the chan-
nel hardening and favorable propagation in frequency-selective
massive MIMO channels under mild assumptions about chan-
nel characteristics. Specifically, we investigate the CDF of
channel hardening and favorable propagation as performance
measures of massive MIMO-based networks. In addition, we
introduce the new concept of favorable equalization as an
indicator of how much the channel exhibits frequency flatness.

Simple expressions are derived for the widely used Clarke’s
propagation model, from which some useful insights on the
interplay between number of antennas and bandwidth can be
obtained. Specifically, it is shown how the channel hardening
rate is proportional to M and system bandwidth W , whereas
favorable propagation and equalization rates are proportional
to M , but not to W .

Our framework generalizes the analysis of massive MIMO
channel conditions in a wideband context having the classic
narrowband massive MIMO and time-reversal (TR) schemes
as particular cases. In fact, while TR is a single-antenna
technique which pre-filters the signal in the time-domain such
that all multipath components sum up coherently at receiver
location [7], massive MIMO pre-filters the signal in the space-
domain to achieve the same result. We will discuss in Sec. VII
how such generalization leads to the concept of massive wave-
forming, i.e., space-time matching pre-filtering, which allows
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the creation of parallel wideband additive white Gaussian noise
(AWGN)-like links between the BS and the users’ device,
the latter consisting in a simple receiver requiring neither
equalizers nor OFDM demodulators.

II. SYSTEM MODEL

Consider a downlink scenario with one BS having M
antennas and K single-antenna users randomly deployed
within a circular area of radius R. Each T = 1/W sec-
onds the BS transmits an information symbols vector s[n] =
[s1[n], s2[n], . . . , sK [n]]T ∈ CK , where W is the system band-
width, and sk[n] is the symbol transmitted to user k at discrete
time n. Without loss of generality, symbols are taken i.i.d. and
normalized so that E

{
|sk[n]|2

}
= 1.

We model the frequency-selective MIMO equivalent com-
plex baseband channel as a tapped delay line so that the signal
received by user k at time n can be written as

yk[n] =
L−1∑
l=0

h†
k
[l] x[n − l] + wk[n] , (1)

where x[n] = [x1[n], x2[n], . . . , xM [n]]T ∈ CM is the trans-
mitted vector at time n, {wk[n]} are i.i.d. zero mean complex
Gaussian random variables (RVs) representing the AWGN, and
hk[l] is the lth vector-valued tap of the channel between the
BS and user k. Note that if the maximum channel propagation
delay is τm, then hk[l] = 0, for l ≥ L, where L = dW τme. The
symbol † denotes the conjugate transpose.

We consider the following general multipath channel model

hk[l] =
Pk∑
p=1

√
βk,p a(θk,p) γ(l − τk,p W) e φk,p , (2)

where Pk denotes the number of physical paths, βk,p and
θk,p the gain and the angle of departure of the pth path,
respectively. φk,p are modeled as i.i.d. RVs with uniform
distribution in [0, 2π), responsible for the short-term (fast)
channel variations, and γ(x) = sinc (x). We do not make
further assumptions on the channel. The vector a(θ) is the
steering vector defined as

a(θ) =
[
1, e− 2π

D
λ sin θ, e− 2π

2 D
λ sin θ, . . . , e− 2π

(M−1)D
λ sin θ

]T
,

(3)
with λ being the carrier wavelength and D the antenna array
inter-element distance we set to D = λ/2. We collect the
slow-varying parameters of the channel, which depend on the
scenario (e.g., position of users, scatterers, etc,), in the set
Θ =

{{
βk,p

}
,
{
θk,p

}
,
{
τk,p

}}
.

The transmitted vector is the result of a pre-coding filtering
operation

x[n] =
L−1∑

l=−L+1
F[l] s[n − l] . (4)

Supposing the channel state information (CSI) is available
at the BS, e.g., exploiting channel reprocity [6], in this paper
the following matching pre-filter is adopted:1

F[l] = b H†[−l] (5)

for −L +1 ≤ l ≤ L −1, where H[l] = [h1[l], h2[l], . . . hK [l]]†.
The filter (5) can be seen under different perspectives, i.e.,
as a multi-antenna TR precoding or, equivalently, as a space-
time matching pre-filter leading to the final effect of adding
coherently all path components at each user location. The
coefficient b can be chosen so that the total transmitted power
is restricted to a maximum desired value. Without loss of
generality, we set b = 1 as it does not affect the following
analysis. Note that when W is small (narrowband) then L = 1
and the scheme reduces to the classic OFDM-based massive
MIMO with W being the sub-carrier (or resource block)
bandwidth. On the other extreme, when L > 1 (wideband)
and M = 1, the scheme reduces to TR [7]. When both L
and M are much larger than one, we obtain more degrees of
flexibility in processing the signal as discussed in Sec. VII.

Substituting (5) in (4) and (1), the signal received by the
generic user k is

yk[n] =
L−1∑

q=−L+1

K∑
r=1

gk,r [q] sr [n − q] + wk[n]

=gk,k[0] sk[n] +
L−1∑

q=−L+1,q,0
gk,k[q] sk[n − q]

+

L−1∑
q=−L+1

K∑
r=1,r,k

gk,r [q] sr [n − q] + wk[n] , (6)

where we have defined

gk,r [q] =
L−1∑
l=0

hk[l]† hr [l − q]

=

Pk∑
p=1

Pr∑
i=1

√
βk,p

√
βr,i a(θk,p)† a(θr,i) e− φk,p e φr, i

·

L−1∑
l=0

γ(l −W τk,p) γ(l − q −W τr,i) . (7)

The four terms put in evidence in (6) are, respectively, the
useful, inter-symbol interference (ISI), multi-user interference
(MUI), and the thermal noise components.

III. CHANNEL HARDENING

The key channel property exploited in massive MIMO
systems is the (asymptotic) channel hardening, i.e., when the
equivalent channel between the BS and the user tends to
become deterministic when letting the number M of antennas
grow to infinity. More precisely, channel hardening is a local

1The precoding filter is not casual for notation convenience. In practical
implementations the filter will introduce a delay of L time instants.
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property of a particular location/configuration (scenario Θ) and
appears when

gk,k[0]
E

{
gk,k[0]|Θ

} → 1 as M →∞ , (8)

where the convergence has to be intended in probability. The
denominator in (8) is

E
{
gk,k[0]|Θ

}
=

Pk∑
p=1

βk,p

L−1∑
l=0
|γ(l −W τk,p)|

2 . (9)

Since the converge in mean square sense implies conver-
gence in probability, then (8) is satisfied when

CH =
Var

(
gk,k[0]|Θ

)(
E

{
gk,k[0]|Θ

})2 → 0 as M →∞ (10)

where

Var
(
gk,k[0]|Θ

)
=

Pk∑
p=1

Pk∑
i=1,i,p

βk,p βk,i |ga(θk,p, θk,i)|
2

· |γ(W (τk,p − τk,i))|2 , (11)

having defined ga(θ1, θ2) = a†(θ1) a(θ2). We consider the
following upper bound for |ga(θ1, θ2)| ≤ Ca(θ1, θ2), with

Ca(θ1, θ2) =

{
1 | sin(θ1) − sin(θ2)| ≤

1
M

min
(
1, 1

M(sin(θ1)−sin(θ2))

)
otherwise

(12)
In addition we make the following approximation: γ(x) =
sinc (x) ≈ T(x) = 1 for |x | ≤ 1/2, zero otherwise, whose
marginal impact on the performance will be assessed in the
numerical results. As a consequence, (10) can be approximated
as

CH '

∑Pk

p=1
∑Pk

i=1,i,p βk,p βk,i C2
a(θk,p, θk,i) T(W (τk,p − τk,i))∑Pk

p=1
∑Pk

i=1 βk,p βk,i
.

(13)

Since channel hardening is a local measure, i.e., CH =
CH(Θ), when analyzing large networks it is more meaningful
to introduce the following channel hardening measure [5]:

PCH(η) = P {CH < η} , (14)

with respect to different scenarios Θ. PCH(η) is the CDF of the
RV CH and provides the percentage of randomly located users
that experience CH smaller than a certain desirable threshold
η (e.g., −20 dB). In other words, it represents the fading-free
coverage of the massive MIMO network.

IV. FAVORABLE PROPAGATION

Asymptotic favorable propagation is the condition such that
the equivalent channels between the BS and the users tend to
be orthogonal as M grows, i.e., ∀q

gk,r [q]√
E

{
gk,k[0]|Θ

}
E

{
gr,r [0]|Θ

} → 0 as M →∞, for r , k

(15)
Since E

{
gk,r [q]|Θ

}
= 0 for r , k and ∀q, the sufficient

condition for favorable propagation for the generic user k is

FP =
K∑

r=1,r,k

Var
(∑L−1

q=−L+1 gk,r [q]|Θ
)

E
{
gk,k[0]|Θ

}
E

{
gk,r [0]|Θ

} → 0 as M →∞

(16)

After some math and using (7) it is

Var ©«
L−1∑

q=−L+1
gk,r [q]|Θ

ª®¬ =
Pk∑
p=1

Pr∑
i=1

βk,p βr,i |ga(θk,p, θr,i)|
2

·

L−1∑
q=−L+1

|γ(W (τk,p − τr,i) − q)|2

which, substituted in (16) and making the same approxima-
tions as for CH, gives

FP '
K∑

r=1,r,k

∑Pk

p=1
∑Pr

i=1 βk,p βr,iC
2
a(θk,p, θr,i) Ek,r (p, i)∑Pk

p=1
∑Pr

i=1 βk,p βr,i
(17)

with Ek,r (p, i) =
∑L−1

q=−L+1 T(W (τk,p − τr,i) − q). When oper-
ating at network level, analogously to channel hardening, we
consider the following favorable propagation measure:

PFP(η) = P {FP < η} (18)

with respect to different scenarios Θ. It represents the
interference-free coverage of the massive MIMO network.

V. FAVORABLE EQUALIZATION

Here we introduce the new concept of (asymptotic) favor-
able equalization as the condition such that the ISI becomes
negligible with respect to the useful component, i.e., the
channel becomes frequency flat, as M grows. With reference
to the generic user k, it is defined as follows

gk,k[q]

(E
{
gk,k[0]|Θ

}
)2
→ 0 as M →∞, ∀q , 0 . (19)

Considering that E
{
gk,k[q]|Θ

}
= 0 for q , 0, the sufficient

condition for favorable equalization is

FE =
Var

(∑L−1
q=−L+1,q,0 gk,k[q]|Θ

)
(
E

{
gk,k[0]|Θ

})2 → 0 as M →∞ (20)
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The numerator of (20) is

Var ©«
L−1∑

q=−L+1,q,0
gk,k[q]|Θ

ª®¬ =
Pk∑
p=1

Pk∑
i=1,i,p

βk,p βk,i |ga(θk,p, θk,i)|
2

·

L−1∑
q=−L+1,q,0

|γ(W (τk,p − τk,i) − q)|2

which substituted in (20) (and making the same approximation
as for CH) gives

FE '

∑Pk

p=1
∑Pk

i=1,i,p βk,p βk,i C2
a(θk,p, θk,i)Dk(p, i)∑Pk

p=1
∑Pk

i=1 βk,p βk,i
, (21)

having defined Dk(p, i) =
∑L−1

q=−L+1,q,0 T(W (τk,p − τk,i) − q).
As for favorable propagation, we introduce the favorable

equalization measure:

PFE(η) = P {FE < η} (22)

with respect to different scenarios Θ. It represents the ISI-free
coverage of the massive MIMO network.

VI. RESULTS FOR TYPICAL PROPAGATION SCENARIOS

We derive simple explicit relations for PFP(η), PCH(η), and
PFE(η) in remarkable propagation scenarios in order to get
some insights about the impact of M and W on frequency-
selective massive MIMO channel characteristics.

We consider a Clarke-based model in which a uniform set
of Pk = P, ∀k, scatterers is supposed to be present around
the transmitter at a distance of Rs meters and βk,p ≈ βk,0,
p = 1, 2, . . . P [4]. Note that in this case the channel delay
spread is τd = 2 Rs/c, being c speed of light. Under this
model, equations (13), (17) and (21) simplify, respectively, to:

CH '
2

P2

P−1∑
p=1

P∑
i=p+1

C2
a(θk,p, θk,i)T(W (τk,p − τk,i)) (23)

FP '
1

P2

K∑
r=1,r,k

P∑
p=1

P∑
i=1

C2
a(θk,p, θr,i) (24)

FE '
2

P2

P−1∑
p=1

P∑
i=p+1

C2
a(θk,p, θk,i)Dk(p, i) . (25)

We start analyzing the favorable propagation measure. Ac-
cording to the Clarke’s model, θk,p and θk,i are independent
and uniformly distributed in [0, 2π), therefore, for large M ,
Ca(θk,p, θk,i) tends to be distributed as a Bernoulli RV with
parameter px =

∑M
n=1 p2

n, where pn represents the probability
that θk,p falls in the nth cosine direction of width 2/M (see
(12)), i.e,

pn = P
{
θk,p ∈

[
−1 +

2 (n − 1)
M

,−1 +
2 n
M

]}
=

1
π

(
arcsin

(
−1 +

2 n
M

)
− arcsin

(
−1 +

2 (n − 1)
M

))
(26)

and px is the probability that that both θk,p and θk,i fall in
the same cosine direction of width 2/M , thus providing a
contribution different from zero in (24).

Define now Xj , j = 1, 2, . . . , J, with J = (K − 1) P2, a set
of i.i.d. Bernoulli RVs with parameter px . It follows that (24)
is statistically equivalent to the following RV

FP '
1

P2

J∑
j=1

Xj =
1

P2 Y (27)

being Y a Binomial RV with parameters px and J. Therefore,
the favorable propagation measure can be obtained as

PFP(η) ' CB
(
η P2; px, (K − 1) P2

)
(28)

with CB(x; p, n) denoting the CDF of the Binomial RV with
parameters p and n. Note that px decreases proportionally to
M and the same does E {FP} = px J/P2 = px (K − 1).

Regarding the evaluation of the channel hardening measure
in (23), using similar arguments as for favorable propagation,
it is

CH '
2

P2

J∑
j=1

Xj =
2

P2 Y , (29)

with J = (P−1) (P−2)/2. Now px =
∑M

n=1 p2
n is the probability

that that both θk,p and θk,i fall in the same cosine direction
of width 2/M and τk,p , τk,i fall in the same time bin of width
2/W , thus providing a contribution different from zero in (23),
where

pn =
1

π τd W

(
arcsin

(
−1 +

2 n
M

)
− arcsin

(
−1 +

2 (n − 1)
M

))
.

The channel hardening CDF results

PCH(η) ' CB
(
η P2/2; px, (P − 1) (P − 2)/2)

)
. (30)

The mean value of CH decreases proportionally to M τd W .
Favorable equalization is the same as channel hardening

with pn given by

pn =
(
τd W − 1
πτd W

) (
arcsin

(
−1 +

2 n
M

)
− arcsin

(
−1 +

2 (n − 1)
M

))
where px now represents the probability that that both θk,p
and θk,i fall in the same cosine direction of width 2/M , and
τk,p , τk,i do not fall in the same time bin of width 2/W , thus
providing a contribution different from zero in (25). The mean
value of FE decreases proportional to M .

Another remarkable propagation scenario is the non-fading
LOS. In this case it is P = 1, therefore it follows that
CH = FE = 0 and only the MUI affects the performance.
The favorable propagation measure is still given by (28) with
P = 1.
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Fig. 1. Average CH, FE and FP as a function of the number of antennas.
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Fig. 2. CDF of CH, FP and FE with M = 50, W = 20 MHz.

A. Numerical results

If not otherwise specified, in the numerical results we
consider the following parameters: W = 20 MHz, R =

1000 meters, Rs = 50 meters, P = 100, K = 10 users, Clarke’s
model, λ = 1 cm. In Fig. 1 the average CH, FE, and FP
as a function of M are reported. Approximated analytical
results are compared with Monte Carlo simulations confirming
that FP and FE decrease proportionally to M regardless the
channel bandwidth W . On the contrary, channel bandwidth
affects the behavior of CH, in particular it contributes to
accelerate the rate of hardening. Similar curve for FP is
obtained in the non-fading LOS channel.

The CDFs of CH, FE, and FP are shown in Fig. 2 for
M = 50. The approximated analytical expressions (30), (28)
are compared with Monte Carlo simulation results showing
the capability of the former to capture the main behavior.
Typically, the largest impact on coverage is determined by the
MUI which is dominant as soon as K > 1. From this plot one

F[l]

sK[n]

s1[n]

s2[n]

y1[n]

yk[n]

AWGN
receiver

AWGN
receiverPre-coding

Transmitter

Fig. 3. Massive waveforming.

can investigate the percentage of user locations experiencing
the ”massive channel”, i.e., fading, ISI and MUI free.

VII. MASSIVE WAVEFORMING AND CONCLUSIONS

With reference to Fig. 3, the space-time matching pre-filter
considered realizes a sort of massive waveforming scheme
in which, for large M , coherent combination of waveforms
is obtained in most of intended user locations (according to
the CDF analysis above). It is important to notice that under
channel hardening, favorable propagation and favorable equal-
ization conditions, the link between the BS and the generic
user becomes AWGN-like, i.e., yk[n] ' h0 sk[n] + wk[n], ∀n,
regardless the bandwidth W , with h0 = E

{
gk,k[0]|Θ

}
being a

deterministic constant depending on scenario configuration Θ.
As a consequence, K parallel high-speed links can be realized
using simple AWGN receivers at user side with no CSI. This
allows the adoption of extremely low-complexity and energy-
efficient receivers as the complexity, in the order of O(K M L)
as worst-case estimate,2 is entirely moved to the BS. What is
interesting to underline is that at the receiver neither equalizers
nor OFDM-like schemes are needed (hence no cyclic prefix
overhead price is paid). Future investigation will address the
impact of imperfect CSI on wideband massive MIMO channel
characteristics.
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