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Abstract—Adaptive filter theory for supervised identification of
linear time-invariant (LTI) systems is an established and fruitful
discipline in digital signal processing. In certain applications,
however, the input and output signals of an LTI system may be
asynchronously sampled at slightly different sampling frequencies
resulting in a small input-output sampling rate offset (IO-SRO).
In this contribution, we argue that an LTI system with IO-SRO
is seen as a linear time-variant system by the adaptive filter.
By conducting a convergence-in-the-mean analysis, we propose
a model to capture the influence of IO-SRO on the tracking
properties of the adaptive filter. Eventually, we validate our
model by reconstruction of the IO-SRO based on the proposed
model and the observable adaptive filter behavior. The model-
based IO-SRO reconstruction turns out to be highly precise and
robust against noise and excitation bandwidth limitations when
compared to a state-of-the-art method.

Index Terms—Adaptive filter theory, supervised system iden-
tification, sampling rate offset, asynchronous sampling.

I. INTRODUCTION

Adaptive filter theory has been a topic of active research

in digital signal processing for several decades [1]–[3] and

the use of adaptive filters for supervised system identification

has found numerous successful applications in acoustic echo

cancellation (AEC) for hands-free communication [4]–[8],

feedback cancellation, e.g., in public address systems [5],

[9], and network echo cancellation [4]. In the vast majority

of cases, the system under consideration is modeled in the

digital domain entirely. For the identification of continuous-

time physical models under clock-skew, however, the effects of

analog-to-digital (A/D) and digital-to-analog (D/A) conversion

have to be taken into account. Even if quantization can

be neglected due to sufficient resolution, the discrete-time

sampling itself may present a challenge if D/A and A/D

conversion is asynchronous, i.e., not controlled by the same

oscillator. The ensuing input-output sampling rate offset (IO-

SRO) may often be very small, i.e., in the order of parts per

million (ppm), yet the effect can be detrimental in several

applications [10], [11].

While the issue of sampling rate offset in general has

recently become the focus of research in applications of dis-

tributed acoustic sensing [12]–[15], adaptive filter performance

with IO-SRO has mostly been tackled in the area of acoustic
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interference cancellation [16] and AEC. While the authors in

[17] mostly consider the problem of sampling rate conversion

for deliberate multi-rate AEC, a time-domain algorithm for

error-signal-based estimation and compensation of the small,

yet unknown IO-SRO is proposed in [11]. Another approach

to asynchronous frequency-domain AEC (async-FDAEC) is

presented in [18]. A fundamental analysis of the behavior of

the adaptive filter under the influence of IO-SRO is, however,

not available in the respective literature.

In this contribution, we argue that an analog linear time-

invariant (LTI) system with two independent and asynchronous

D/A and A/D converters can be described in the time-discrete

domain as a linear time-variant (LTV) system comprised

of a digital-to-digital (D/D) converter and the time-discrete

representation of the original LTI system. An adaptive filter

designed for system identification based on the asynchronously

sampled input and output signals will thus attempt to track

the composite LTV system. We derive a model for this

tracking behavior of the adaptive filter in a convergence-

in-the-mean analysis of the filter coefficients. The model

eventually suggests a time-invariant lag filter that captures

the tracking bias in magnitude and phase. As the IO-SRO is

among the main constituent factors of the lag filter’s phase,

we can validate our theoretical model by reconstruction of

the underlying IO-SRO, for instance, by fitting the model

phase to that of the cross-power spectral density (CPSD)

between the system output and the adaptive filter output. While

our focus is on the convergence analysis and the ensuing

model for adaptive filtering with IO-SRO, the extracted IO-

SRO information would need to be compensated, e.g., via

resampling [19]–[21] in order to obtain a fully functional AEC

or interference cancellation system. The investigation of IO-

SRO compensation is, however, beyond the scope of this paper.

Our contribution is structured as follows. In Sec. II, we

derive the equivalent LTV representation of an LTI system with

IO-SRO before analyzing the tracking of the adaptive filter

culminating in the model of the respective time-invariant lag

filter. Sec. III then describes a procedure for model verification

by reconstructing the IO-SRO based on the observable signals.

Computer experiments to validate our model are presented

in Sec. IV before we conclude our contribution in Sec. V.

Throughout this paper, capital letters denote frequency-domain

quantities while bold and bold underlined characters indicate

vectors and matrices, respectively.
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Fig. 1. Analog and digital representation of a linear system with IO-SRO and
supervised system identification by an adaptive filter.

II. ADAPTIVE FILTERS WITH INPUT-OUTPUT SRO

A. Equivalent System Model with Input-Output SRO

We first consider the digital-to-digital signal model in Fig. 1.

A signal x(mTx) at discrete time instants m with sampling

interval Tx is converted into an analog signal x(t) to be

processed by an analog LTI system h(t). The system output

is corrupted by additive noise n(t) before the resulting signal

y(t) is converted into a time-discrete signal y(k Ty) at time

instant k and sampling interval Ty. The mismatching sampling

intervals introduce a small IO-SRO ε = Ty/Tx− 1. Note that,

due to the different sampling intervals, all signals here are

represented with a continuous time scale.

As depicted in the middle of Fig. 1, we can represent the

system in an all-digital form by shifting the A/D converter

across the LTI system and merging the mismatched D/A and

A/D converters. In this digital representation, the resulting

D/D converter [19] adjusts the sampling interval Tx to Ty.

Accordingly, the new input signal x(k Ty) of the discrete-time

LTI system h is modeled as the output of an ideal resampler

via sinc interpolation [19], i.e.,

x(k Ty) =
∑

m

x(mTx) sinc(k (1 + ε)−m) , (1)

where we have assumed Tx > Ty without loss of generality.

With input x(k Ty) and output y(k Ty) at the same sampling

frequency, we then describe the output of the LTI system via

a time-discrete convolution

y(k Ty) =
∑

l

x ((k − l)Ty) h(l Ty)

=
∑

l

∑

m

x(mTx) sinc ((k − l)(1 + ε)−m) h(l Ty)

=
∑

m

x(mTx)
∑

l

h(l Ty) sinc ((k − l)(1 + ε)−m) ,

(2)
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Fig. 2. Example of an adaptive filter wk tracking the impulse response h of
an LTI system at 16 kHz sampling rate with IO-SRO ε = 50ppm.

where (1) is employed to relate y(k Ty) back to the original

input x(mTx). For the inner sum S(m, k) in (2), we recall

Ty = (1 + ε)Tx and apply a resampling similar to (1) to find

S(m, k) =
∑

l

h(l Ty) sinc ((k − l)(1 + ε)−m)

=
∑

l

h(l Ty) sinc (k −m+ ε k − (1 + ε) l)

= h ((k −m+ ε k)Tx) (3)

and hence, inserting (3) back into (2) yields

y(k Ty) =
∑

m

x(mTx)h ((k −m)Tx + ε k Tx) . (4)

We may interpret the result in (4) in the following way. If the

time-discrete samples of x(mTx) and y(k Ty) are considered

as input and output of a linear system, then this system is

the time-discrete representation of the original LTI system,

but with a uniformly increasing delay ε k Tx, resulting in an

overall “moving” LTV system hk.

B. Model of Adaptive Filter Tracking With IO-SRO

Our conclusion regarding (4) can be verified by running

an adaptive filter wk = [w0,k · · ·wN−1,k]
T of length N in

parallel to the system as depicted in Fig. 1 in order to perform

system identification. In this setup, the adaptive filter treats

input and output signal samples as if they originated from the

same time basis. Consider Fig. 2 for a simple example of the

impulse response h = [h0 · · ·hL−1]
T of length L = N of the

LTI system. The adaptive filter wk shifts with respect to the

true LTI system h over time just as predicted by (4) for the

“moving” LTV system hk. Note that the sinc-like structure is

more pronounced, the farther the real-valued delay ε k Tx is

from an integer number.

To quantitatively model the tracking of the adaptive filter,

we consider the update equation of an LMS-type algorithm

[1]–[3] and conduct a convergence-in-the-mean analysis. For

this derivation we assume N = L. In the update, the input

signal vector xk−1 = [x((k − 1)Tx) x((k − 2)Tx) · · ·x((k −
N)Tx)]

T is defined on the original time basis via Tx while

output signal yk−1 = y((k − 1)Ty) and error signal ek−1 =
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e((k − 1)Ty) are based on Ty as in Fig. 1. The update from

discrete time instant k− 1 to k with step size µ then becomes

wk = wk−1 + µ ek−1 xk−1

= wk−1 + µ
(
yk−1 −w

T
k−1xk−1

)
xk−1

=
(
I− µxk−1x

T
k−1

)
wk−1 + µxk−1 yk−1 , (5)

where I is an N×N identity matrix. For a closed-form analysis

of wk, we restate (5) in a non-recursive form [3], starting with

an arbitrarily chosen time with signals y0 and x0, i.e.,

wk =

k−1∑

i=0

(
I− µxix

T
i

)k−1−i
µxi yi

=

k−1∑

i=0

(
I− µxix

T
i

)k−1−i
µxi

(
x
T
i hi + ni

)
. (6)

In the last line of (6), we have made use of (4) to express

the system output yi as a discrete-time convolution between

the input signal and the time-varying impulse response hi =
[h0,i · · ·hL−1,i]

T , where hl,i = h(l Tx + ε i Tx) as per (4).

We now perform a convergence-in-the-mean analysis of

the adaptive filter wk in (6) by considering the statistical

expectation of the filter coefficients in the sense of the direct-

averaging method [3], [22],

E {wk} ≈

k−1∑

i=0

(I− µRxx)
k−1−i

µRxxhi , (7)

where Rxx = E
{
xix

T
i

}
is the correlation matrix of a

stationary input signal and we have assumed E {xi ni} = 0.

We further assume a Fourier matrix F with FF
H = I

to diagonalize the input correlation Rxx = F
H
Dxx F with

Dxx = diag (Φxx) [3], where Φxx is a vector containing the

power spectral density (PSD) of the input signal as a function

of the discrete frequency. With F, we can express (7) as

E {wk} =
k−1∑

i=0

F
H (I− µDxx)

k−1−i
FF

HµDxxFhi . (8)

Left-multiplying (8) by F and defining frequency-domain

quantities Hi = Fhi and Wk = Fwk, we obtain

E {Wk} =

k−1∑

i=0

(I− µDxx)
k−1−i

µDxxHi . (9)

As (9) describes the evolution of all frequencies in Wk

independently, we focus on a single discrete frequency Ω, i.e.,

E {Wk(Ω)} =

k−1∑

i=0

(1− ν(Ω))
k−1−i

ν(Ω)Hi(Ω) (10)

with ν(Ω) = µΦxx(Ω). To express Hi(Ω) w.r.t. the state of

the LTV system Hk(Ω) at the current time instant k, the time-

varying delay implied by (4) can equivalently be expressed in

frequency domain as Hi(Ω) = exp (−jΩ (k − i) ε)Hk(Ω).

Accordingly, (10) can be cast into an equation relating Wk(Ω)
directly to the LTV system Hk(Ω), namely,

E {Wk(Ω)} =

k−1∑

i=0

(1− ν(Ω))
k−1−i

ν(Ω) e−j Ω (k−i) ε Hk

= Hk(Ω) ν(Ω) e
−j Ω ε

×

k−1∑

i=0

(
(1− ν(Ω)) e−j Ω ε

)k−1−i
. (11)

Eventually, we assume the current time instant k to be already

arbitrarily far away from the initial time i = 0, hence

approximating the sum in (11) by an infinite sum, i.e.,

E {Wk(Ω)} ≈ Hk(Ω) ν(Ω) e
−j Ω ε

∞∑

n=0

(
(1− ν(Ω)) e−j Ω ε

)n

= Hk(Ω) ·
ν(Ω)

ej Ω ε − 1 + ν(Ω)
, (12)

where we have exploited the geometric sum with

| (1− ν(Ω)) exp(−jΩ ε)| < 1 for a small µ or for an

NLMS step size [3]. Thus, the bias between Wk(Ω) and

Hk(Ω) is represented by a time-invariant lag filter

L(Ω) =
ν(Ω)

ej Ω ε − 1 + ν(Ω)
. (13)

For small IO-SRO ε ≪ 1, we may further approximate the

complex exponential exp(j Ω ε) ≈ 1 + j Ω ε which yields

L(Ω) ≈
ν(Ω)

ν(Ω) + j Ω ε
. (14)

The lag filter (14) is time-invariant, i.e., independent of k and

is determined entirely by the degree of time-variance of the

system expressed via IO-SRO ε and by the adaptation process

itself that is controlled by step size µ and input PSD Φxx(Ω).

III. VERIFICATION VIA IO-SRO RECONSTRUCTION

While the proposed lag filter (14) models the tracking

behavior of the adaptive filter, it will also affect the CPSD

Φ
Y Ŷ

(Ω) = E
{
Yk(Ω) Ŷ

∗

k (Ω)
}

= E {(Hk(Ω)Xk(Ω) +Nk(Ω)) W
∗

k (Ω)X
∗

k (Ω)}

= Hk(Ω)E {W ∗

k (Ω)}Φxx(Ω) , (15)

between the observed signal Y (Ω) and the adaptive filter out-

put Ŷ (Ω) with E {X(Ω)X∗(Ω)} = Φxx(Ω). In the last step

of (15), we have assumed statistical independence between

Wk(Ω) and Xk(Ω). Using (12), we can readily express the

CPSD (15) as

Φ
Y Ŷ

(Ω) = |H(Ω)|
2
Φxx(Ω) · L

∗(Ω) , (16)

with |H(Ω)|2 = |Hk(Ω)|
2, as the time-variance is only a shift.

From (16) we observe that the phase of the CPSD is the

same as the negative phase of the lag filter, i.e., ∠Φ
Y Ŷ

(Ω) =
−∠L(Ω) = atan(Ω ε/ν(Ω)) and hence

tan∠Φ
Y Ŷ

(Ω) =
Ω

ν(Ω)
· ε , (17)

2019 27th European Signal Processing Conference (EUSIPCO)



0 0.2 0.4 0.6 0.8 1
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

Ω/π

∠
Φ

Y
Ŷ
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Fig. 3. Measured CPSD phase and phase according to the lag-filter model
(14) with reconstructed ε̂ via weighted least-squares solution from (17).

where we have used the approximation in (14).

With relation (17) we can directly fit the phase of the model

lag filter to the phase of the CPSD between system output and

adaptive filter output. We can therefore verify the lag filter

model by calculating a reconstructed ε̂ of the IO-SRO from the

CPSD. This reconstruction can then be used either to compare

directly to a ground-truth ε or to predict the CPSD phase based

on the model (14).

Since we are interested in a single broadband reconstruction

ε̂ based on the available Φ
Y Ŷ

(Ω) and ν(Ω) at individual Ω,

we propose to solve (17) for ε via a weighted least-squares

procedure. We specifically use Φ
Ŷ Ŷ

(Ω) = E
{
ŶkŶ

∗

k

}
as a

weighting function since it will put zero weights on frequen-

cies Ω with Wk(Ω) = 0 and Xk(Ω) = 0 and accordingly

undefined phase. For a simple experiment without additive

noise, we find ε̂ based on (17) and reconstruct the CPSD

phase via the model (14). The result is depicted in Fig. 3 and

indicates that the approximation by the lag filter based on ε̂ is

valid for the full frequency range. Further analysis regarding

the quality of the reconstructed ε̂ is presented in the computer

experiments in Sec. IV.

IV. EXPERIMENTAL EVALUATION

We aim to validate the proposed lag filter model (14) in

computer experiments by assessing its ability to extract the

IO-SRO from the CPSD between system output and adaptive

filter output via (17) as proposed in Sec. III.

As discrete-time LTI system h in Fig. 1, we use a random

impulse response of length L = 128 with the first 64 taps

set to zero. Input sequence x(k Ty) is generated as pseudo-

random multi-tone [23] with random phase and amplitudes for

the individual tones at T−1
y = 16 kHz sampling with a total

duration of 20 s. We calculate the output of h as a discrete-time

convolution and add white noise n(k Ty) at different signal-

to-noise ratios (SNR) to obtain the output y(k Ty). The input

signal for the adaptive filter x(mTx) is generated with the

same phases and amplitudes as x(k Ty), but with a slightly

different sampling to introduce a desired IO-SRO ε.

The update of wk is performed by an NLMS algorithm

[2], [3] with a time-varying step size µk = µ0/‖xk‖
2 and

−100 −50 0 50 100
0
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R
M
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Fig. 4. RMSE between ε and ε̂ obtained using NLMS adaptation.

normalized step size µ0 = 0.01 and a filter length of N = 256.

Notice that in this setup, the adaptive filter wk has 64 taps

headroom to drift to the left (positive ε) as seen in Fig. 2 and

128 taps to drift to the right (negative ε). In practical applica-

tion scenarios, such as AEC or interference cancellation, where

the extracted IO-SRO could be compensated by resampling

[19], this would not cause a problem. But in our experiments,

we do not compensate for the reconstructed IO-SRO to assess

the model independently of the compensation method. This

introduces a slightly asymmetrical reconstruction performance

because of the finite headroom for the uncompensated drift.

Using 256ms blocks of y(k Ty) and ŷ(k Ty), we calculate

the CPSD in (17) and find a broadband reconstruction ε̂ via

the weighted least-squares procedure described in Sec. III. The

final value ε̂ is obtained by averaging over the 20 s of input

data. All experiments are conducted for ε = −100 . . .100 ppm
at 0 dB SNR, 10 dB SNR, and without any additive noise.

For each setup, we repeat the experiments R = 20 times and

evaluate the root-mean-square error (RMSE) for each ε as

RMSE(ε) =

√√√√ 1

R

R∑

r=1

(
ε− ε̂(r)

)2
. (18)

The results in terms of RMSE are depicted in Fig. 4. Gener-

ally, we observe an asymmetrical tilt due to the aforementioned

imbalance of filter lengths for positive and negative ε. In either

way, the RMSE values are in the range of single-digit ppm
and decline towards ε = 0, which is an important characteristic

if the resulting IO-SRO were to be successively compensated

via resampling. Overall, the model allows the extraction of ε̂
over a wide range of ε and also in adverse noise conditions

without significant loss of accuracy.

So far, we have only considered the influence of ε, but

the model in (14) is also determined by the excitation PSD

Φxx(Ω). In a second experiment, we therefore introduce

different upper cut-off frequencies Ωc for the excitation signal

x(k Ty) that introduce a low-pass effect on Φxx(Ω). Since

the RMSE in (18) turned out to be dependent on ε as seen in

Fig. 4, we consider instead the relative root-mean-square error

relRMSE(ε) = RMSE(ε)/|ε| in the second experiment and

average across all ε. We further compare the performance of

the proposed model in terms of IO-SRO reconstruction with

that of a state-of-the-art method proposed for async-FDAEC

in [18]. For this comparison, we employ a normalized step-
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TABLE I
RESULTS IN TERMS OF relRMSE FOR ε̂.

SNR [dB] proposed model async-FDAEC [18]
Ω

c
=

π 0 0.035± 0.010 0.059± 0.047

10 0.026± 0.013 0.050± 0.035

no noise 0.027± 0.013 0.051± 0.040

Ω
c
=

π
/
2 0 0.019± 0.005 0.148± 0.132

10 0.016± 0.003 0.139± 0.134

no noise 0.015± 0.003 0.145± 0.148

Ω
c
=

π
/
4 0 0.032± 0.014 0.385± 0.408

10 0.027± 0.006 0.403± 0.443

no noise 0.028± 0.006 0.350± 0.370

size µ0 = 0.01 for both methods and the step-size for the

SRO update in [18] is set to 10−12 for stable convergence.

All other parameters, such as frame size and shift, are chosen

as suggested by the authors in [18].

The results including the standard deviation across all

investigated IO-SROs (R = 20 trials each) are presented in

Tab. I. In the majority of setups, the relative RMSE of the

proposed method is around or below 3%, indicating that the

model predicts accurately for the considered range of ε, SNR,

and excitation bandwidth. The state-of-the-art async-FDAEC

method performs only slightly worse with fullband-excitation,

but seems to suffer from insufficient excitation bandwidth.

While the results in Tab. I suggest superior performance of

the proposed method, it should be noted that the method

proposed in [18] also compensates the estimated IO-SRO and

the ensuing drift via phase rotation in the STFT domain and

is hence suitable for asynchronous AEC. Our proposed model

and reconstruction, however, would require an additional drift

compensation that is beyond the scope of this paper.

V. CONCLUSION

In this contribution, we have presented a novel model for

adaptive filter behavior under IO-SRO conditions. By arguing

that an adaptive filter sees a system with mismatched input

and output sampling rates as a time-varying system, we have

developed an expression for a time-invariant lag-filter that

captures the tracking bias resulting from the IO-SRO. This lag

filter is a function of the IO-SRO itself as well as the adaptive

filter configuration via the update step size and the PSD of the

excitation. It can be related to the phase of the CPSD between

system output and adaptive filter output. Through this link,

we have been able to extract the IO-SRO from the phase of

the lag filter and have assessed the quality of this IO-SRO

reconstruction as an indicator of model accuracy in several

computer experiments. A comparison with a state-of-the-art

technique shows good and robust performance of the proposed

model in various configurations.
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