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Abstract—The problem of identification of a linear nonsta-
tionary stochastic process is considered and solved using the
approach based on functional series approximation of time-
varying parameter trajectories. The proposed fast basis func-
tion estimators are computationally attractive and yield results
that are better than those provided by the local least squares
algorithms. It is shown that two important design parameters —
the number of basis functions and the size of the local analysis
interval — can be selected on-line in an adaptive way.

Index Terms—Identification of nonstationary processes, basis
function estimators, adaptive estimation

I. INTRODUCTION

The method of basis functions is a well-known and long-
standing approach to identification of nonstationary systems
described by linear regression equations [1] — [9]. In this
framework, which is an extension of the local estimation
approach [10], [11], each of n process parameters is approxi-
mated by a linear combination of m known functions of time,
called basis functions. In this way the problem of tracking
n time-varying parameters can be converted into a simpler
problem of estimation of nm time-invariant hyperparameters
— the coefficients that appear in basis function expansions of
parameter trajectories. Estimation of hyperparameters can be
easily carried out using the method of least squares. However,
since estimation of hyperparameters requires inversion of a
nm X mn generalized regression matrix, the obvious price
one has to pay when the conversion described above is
used, is in terms of computational burden. Another problem
associated with this class of estimators, important from the
practical viewpoint, is the choice of design parameters such
as the approximation range (to comply with the rate of
process nonstationarity) and the number of basis functions
(to avoid overparametrization). In this paper we deal with all
problems mentioned above. First, based on some large sample
approximations, we derive a computationally fast version of
the basis function estimator, which requires inversion of a nxn
regression matrix only, i.e., has computational complexity
comparable with that of the local least squares estimators [10].
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Second, we propose an adaptive scheme for on-line adjustment
of the number of basis functions and the size of the local
analysis window.

II. LOCAL BASIS FUNCTION APPROACH

Consider the problem of identification, based on the avail-
able input-output data, of a nonstationary stochastic process
governed by

y(t) =" (1)0() +e(t) (1)
where t = ..., —1,0,1,... denotes discrete (normalized)
time, p(t) = [u(t —1),...,u(t —n)]T denotes the regression

vector made up of the previous samples of the observable
input signal u(t), 6(t) = [6*(t),...,0™(t)]T is the vector of
unknown time-varying process parameters, and e(¢) denotes
white measurement noise.

In the classical basis function framework, one assumes
that in a selected time interval 7' each parameter trajec-
tory {67(t),t € T} can be modeled as a linear com-
bination of a certain number of known functions of time
{fi(t),..., fm(t),t € T}, further referred to as basis func-
tions (BF). Based on the input-output information {y(¢), ¢(t),
t € T}, gathered in the interval T', one can estimate time-
invariant approximation coefficients and the corresponding
parameter trajectories {67(t),t € T},j = 1,...,n. While
the classical BF approach yields interval estimates of time
varying parameters {67(t),t € T}, the local basis function
(LBF) approach, developed in this paper, provides a sequence
of point estimates evaluated independently for each position of
the sliding local analysis window Ty (t) = [t—k, t+k] centered
at t. It can be shown that such point estimates are more
accurate than the interval ones, especially at locations close
to both ends of T} (¢) (which is pretty obvious considering the
fact that only one-sided information is available at both ends
of the analysis interval) [10].

Denote by

fl\k(z):flo <;;_>7 l:1a7m7 Ze[k:[_k’k] (2
the set of linearly independent discrete-time functions obtained
by sampling their continuous-time analogs f(s),s € [—1,1]
— the square integrable basis generating functions defined on
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the interval [—1,1]. Denote by F* the space of all square
summable sequences defined on Iy and by F,,; — the sub-
space of F* spanned by the basis functions (2). Finally, denote
by

{(Fie(®)s- oy Fonpi(£),t € T (1)} 3)

the orthonormal basis set of F,,x, i.e., the set obeying the
condition

Z NN GES )
t=—k
where fm|k(t) = [f]k(t), cee fm‘k(t)]T. Orthonormalization

can be carried out, for example using the Gram-Schmidt
procedure. In agreement with our local approximation strategy,
we will assume that in the interval T}, each parameter can be
written down as a linear combination of basis functions (3)

t—|—Z Zblm\k'f”k , 1€y, j=1,...,n 4)

Denote by 1, x(t,1) = (t + i) ® fm|k( i) the generalized
regression vector (® is a symbol of a Kronecker product) and
by Bk = [bimlk’ e bin,m“f’ ce bim‘k, ce bfn’m‘k]T the
vector of all approximation coefficients. Using these short-
hands, the local process model can be expressed in the form

Based on (6), the LBF estimate of 6(¢) can be obtained using
the method of least squares

1€ I.

ém\k(t) = Fm|k'/§m|k'(t)v Fm\k =1, ®,E7Tn|k(0) (7N
where
B\m\k(t) = arg ml‘n Z m|k(t7l)/6m|k]2
mlk .

- R;\mrmw( ) ®)

k
) = Z 1oty 1) W i (£,1)
e )

rm\k(t) = Z y(t + i)¢m|k(tai) .

i=—k

When operated in the sliding window mode, the LBF es-
timators are computationally expensive. The computational
burden can be reduced when basis functions are recursively
computable. Such is the case when the basis is made up of
the powers of time, namely

. .\ m—1
(3 7 .
{1’](;7’(]{) s Ze.[k}

which corresponds to choosing f2(s) = s'=1,1 = 1,...,m.
For such a choice of basis functions the formula (5) can be
interpreted as a local Taylor series approximation of the true
parameter trajectory.

(10)

It is straightforward to show that under (9) the vector ?m| (%)
is recursively computable

Foi(i — 1) = Ay (9) (1n

which allows one to recursively compute the regression matrix
R, 1(t) and the vector r,,;(t)

Ry i (t) = B[Ry (t — 1)
- ¢m|k(t -1 _k)"p;z\k(t
rm\k(t) = Bm|k' [rm\k(t - 1)
—y(t—k = Dt -1,
where B, = I, @ Ay .

However, even if the recursive computational scheme (12) is
employed, the need to invert the mn x mn matrix R, (f) at
each time instant ¢ makes the computational effort substantial.
In the next section we will show that this effort can be reduced

significantly if the simplified version of the LBF estimator is
used instead of (7) - (9).

k)] Bm|k

12)

—k)]

III. PROPERTIES OF THE LOCAL BASIS FUNCTION
ESTIMATOR

In order to derive the simplified version of the LBF estima-
tor, we will make some technical assumptions about the input
and noise sequences

(A1) {u(t)} is a zero-mean wide sense stationary Gaussian
sequence, persistently exciting of order at least n, with
an exponentially decaying autocorrelation function r,,(%).
{e(t)}, independent of {u(t)}, is a sequence of zero-
mean independent and identically distributed random
variables.

(A3) {0(t)} is independent of {u(t)} and {e(t)}.

(A2)

According to [6], under (A1) and (A2) it holds that

lim R, x(t) =2 ® L, =R, (13)
k—o0

where ® = E[p(t)¢ " (t)], and convergence takes place in the
mean square sense (and hence also in probability). This means
that for sufficiently large values of k£ the LBF estimator can

be approximately expressed as

0m|k(t) ~ Fm‘k].:_{;@lrm‘k@)
_ [In YA (0)} (&' @1,]

xl;k y(t+i)p(t + ) @ i (i) a4
=o' Z £,.(0) £ 1)yt + 1)ep(t + )
i=—k
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where the second transition follows from the identity (A ®
B)(C®D) = (AC @ BD) (provided that the dimensions of
the corresponding matrices/vectors match each other).

Note that (14) can be rewritten in the form

m\k Z hm\k Z) (15)
i=—k
where
hunio() = £ (0 (3), i € I (16)

is the impulse response associated with the LBF estimator, and
the quantity

0"(t) = @~ y(t)e(t) a7
will be further referred to as the pre-estimate of 6(¢). Com-
bining (1) and (17), and using assumptions (Al) - (A3), one
arrives at

E[0"(t)] = @7 'Elp(t)e” (1)]6(t)
+ @ 'E[p(t)e(t)] = 6(t) (18)

Which means that 6*(t) is an unbiased estimator of 6(t).
However, even though unbiased, the pre-estimate has a very
large variability which makes it useless in practice.

It can be shown [6] that if 1 € Fy,;, ie., if a constant
function can be expressed as a linear combination of basis
functions [note that this condition is fulfilled if the basis (10)
is adopted], it holds that Zfsz Ry k(i) = 1, which means
that the associated filter is lowpass. Combining (14), (15) and
(18), one obtains

E[6,,x(t)] = E

Z P ()0t + 1)

i=—k

i.e., the mean path of LBF estimates can be regarded as the
result of passing the true parameter trajectory through the
basis-dependent lowpass filter .

Note that in the “idealistic” case, where the true parameter
trajectory can be exactly modeled as a linear combination of
basis functions, i.e.,

0(t+i)=I
it holds that

o~

E[0m|k( )] = E[0,,,(1)]

>

n ®H\k(i)]ﬂm\k, i€ Iy

Vi ()L ®?77Tz\k(i)]5m|k
i=—k
Z fm|k

= {I & m|k )‘| }/Bm|k
i=—k

= L, @£ 4 (0)] By = O(2)

which means that under such conditions the LBF estimator is
(approximately) unbiased. For arbitrary parameter changes the
mean path of parameter estimates is a sequence of pointwise
projections of {8(t)} on the subspace F, .

m|k

IV. FAST LOCAL BASIS FUNCTION ESTIMATOR

The simplified, fast version of the local basis function
estimator (fLBF) can be obtained by replacing in (14) the
covariance matrix ® with its local estimate. This results in

0,11 (t) Z R ()y(t +3)p(t +17)  (20)
i=—k
where
N 1 &
(1) = " > et+i)et(t+i) (21)
i=—k

denotes the local estimate of ® and L = 2k + 1 is the width
of the local analysis window.

The fLBF estimator is computationally cheap. First of all,
note that while evaluation of (7) - (8) requires inversion of a
mn x mn matrix Ry, (%), in the case of the fast estimator
the size of the inverted matrix is reduced to (only) n X n.
Moreover, since the matrix ® «(t) can be updated recursively

~

Bi(t) = Belt — 1) + 1plt + T+ )

k
Lot — k1) (t— k- 1)
Ly
one ( can also easily derive a recursive algorithm for evaluation
of <I> L(t) - see e.g. Section 3.2 in [10].
Second if basis functions are recursively computable, the
elements of the vector

(22)

Ponjie(t) = ‘Z hm i ()y (¢ + 0)p(t + 1) (23)

can be also computed recursively. Actually, denote by pﬁn‘ (1)
the I-th component of p,,;(¢) and observe that

Nqu(o) in\k(t)

i=—k

Plapi(t) =

(24)

st et y(t +iyu(t — 1 + ).

Finally, note that in the case of the polynomial basis (10),
the vectors s}n‘ i (t), .- sy, (t) can be computed recursively
using the formula

Stk (8) = A [sp,(t = 1)
—y(t =k —Dult =k =1 = (i — k)]
oyt + kult + & — D + k)

(25)

Remark 1

Note that when the polynomial basis is adopted, and m = 1,
the LBF estimator is identical with the sliding window least
squares estimator.

Remark 2

Since all eigenvalues of the matrix A, ; lie on the unit circle
in the complex plane, the algorithm (25) is not exponentially
stable, but only marginally stable. For this reason, to prevent
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numerical errors from unbounded growth, it is recommended
that the quantities s’ | w(1),0=1,...,n, are periodically reset
to the values obtained via direct (nonrecursive) computation.
The same advice applies to the subtract-add algorithms for
computation of ®(t) and ®; ' (t)

V. ADAPTIVE TUNING OF FAST BASIS FUNCTION
ESTIMATORS

Tracking performance of LBF estimators depends on two
design parameters — the size of the local analysis window (k)
and the number of adopted basis functions (m). It is known
that the bias component of the mean square parameter tracking
error (MSE) is inversely proportional to m and proportional
to k, and the variance component of MSE is proportional to
m and inversely proportional to k. Since MSE is the sum of
both components, to guarantee good tracking, some sort of a
compromise should be reached.

The solution proposed in this paper is based on parallel
estimation. Suppose that M K fLBF estimation algorithms,
equipped with different settings m € M = {mq,...,my}
and k € K = {ki,...,kk}, are run simultaneously and
compared using the local quality measure .J,,|;(t). At each
time instant ¢ we will choose from the set of M K competing
estimates the one that is locally the best Qﬁ(t)m(t)(t) where

(), k(t)} = arg min J,,(t) .
meM
kEK
To assess the local tracking capability of the compared esti-
mation algorithms, we will use the method of cross-validation.
Our key observation is that the fLFB estimator is a solution
of the following quadratic minimization problem

(26)

§m|k(t) -
k
= argmin Y [Lihy(y(t +) = @7 (¢ +1)6)°
i=—k
= W ()W (1) 27)

where W (t) = kaﬁk(t) and W, () = LpPi(t).
As a measure of fit we will use the sum of squared unbiased
interpolation errors
L
Tnii(t) = D [ep it + D)
I=—L
where L determines the size of the local decision window,

() = y(t) — @7 (1), (1) (28)

and 5;1‘ (1) denotes parameter estimate obtained after ex-
cluding the measurement collected at the instant ¢ from the
available data set

070 (t) =
k
= argmin Z [Lichon i (i)y(t + 1) — @™ (t +0)6)°
ii:720k
= [WR()] Wy, (1)

ml|k

(29)

where
WL (t) = Wi(t) — p(t)e™ (¢)
Wik (t) = Win 1 (8) = Liho (0)y(t)p(t).

Incorporating (30) and using the matrix inversion lemma [10],
one obtains

@ (1)65,,,(t)

= () [Wik +

(30)

w,;lgww(t)w;(t)}
1= T (OW, (D (1)

X {Wk(t)amm(t) - Lkhmlk(o)y(t)c‘o(t)} =" (10mii(1)
- L O)y(0) — 7 (0B (0)
where

g (t) = @ (W, (t)ep(t).

Combining the last result with (28), one finally arrives at

() = Emi(t)
00— @ (081

31
1 —qr(t) GD

where

Emi(t) = y() = @ ()0 (1) -
According to (31), evaluation of unbiased interpolation errors
does not require evaluation of the modified estimates (29).
Remark 3

For the basis (10) and m = 1 it holds that Ljhq,(0) = 1,
leading to
et

L—qp(t)

VI. SIMULATION RESULTS

71 (1)

In our simulation experiment parameter estimation was
carried out for a stationary two-tap FIR system governed by

y(t) = Oy (Bu(t — 1) + Oa(t)ult — 2) + e(t).

The input signal was autoregressive Gaussian (r(i) =
(0.8)'“). System parameters were modeled as triangular chirps
with two different linearly increasing beat frequencies — see
Fig. 1. The variance of the measurement noise was set to
o2 = 0.005 which corresponds to SNR=15 dB.

Table 1 shows comparison of the mean squared parameter
estimation errors obtained for 9 LBF/fLBF estimators (poly-
nomial basis) corresponding to different choices of design
parameters: local analysis window size k£ (50, 100, 200)
and the number of basis functions m (1, 3, 5), and for the
adaptive parallel estimation schemes based on cross-validation
(L = 30). The dynamics of the model selection process is
illustrated by decision histograms shown in Fig. 2.

Note that the adaptive schemes yield results that are better or
equal to those provided by the best LBF/fLBF estimators with
fixed settings. As expected, the price paid for computational
simplicity of fLBF estimators is paid in terms of estimation
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Figure 1: Evolution of system parameters (two upper plots)
and typical realizations of the input/output signals (two lower
plots).
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Figure 2: Histograms of decisions on the window size (k) and
the number of basis functions (m) obtained for 100 realizations
of the fLBF estimator. Each time bin corresponds to 100
consecutive samples.

accuracy — the MSE yielded by the LBF-based scheme was
was (for the same process realizations) more than 3 times
lower than the analogous score yielded by the fLBF-based
scheme (see also Fig. 3).

VII. CONCLUSION

Identification of nonstationary stochastic systems can be
carried out using the local basis function (LBF) approach.
While providing good parameter tracking results, the LBF
estimators are computationally demanding, especially for high
dimensions of the adopted functional basis. We have shown
that this computational load can be significantly reduced (at
the cost of some estimation accuracy deterioration) if the

0.5 0.5
< ° s °
0.5 0.5
1 4000 8000 1 4000 8000
t t

Figure 3: Comparison of parameter estimates yielded by the
original parallel estimation scheme (LBF - left plot) and its
fast (simplified) version (fLBF - right plot).

Table I: Mean squared parameter estimation errors obtained
for 9 LBF/fLBF estimators corresponding to different choices
of design parameters k (50, 100, 200) and m (1, 3, 5), and for
the proposed adaptive estimation schemes (A). All averages
were computed for 100 process realizations.

LBF fLBF
E\m | 3 3 | 3 3
50 | 0.0038 0.0008 0.00I1 | 0.0038 0.0122 0.0236
100 | 00193  0.0017 0.0009 | 0.0193 0.0077 0.0128
200 | 00772 0.0162 0.0035 | 0.0772 0.0192  0.0098
A 0.0008 0.0027

simplified, fast version of the LBF algorithm (fLBF) is used
instead of the original one. It was also shown that two
important parameters of fLBF estimators — the number of
basis functions and the size of the local analysis window —
can be chosen in an adaptive way using the cross-validation
technique. The proposed parallel estimation scheme yields
good tracking results at a moderate computational cost.

REFERENCES

[1] T. Subba Rao, “The fitting of nonstationary time-series models with
time-dependent parameters,” J. R. Statist. Soc. B, vol. 32, pp. 312-322,
1970.

[2] J. M. Mendel, Discrete Techniques of Parameter Estimation: The Equa-
tion Error Formulation, New York: Marcel Dekker, 1973.

[3] J. M. Liporace, “Linear estimation of nonstationary signals,” J. Acoust.
Soc. Amer., vol. 58, pp. 1288-1295, 1975.

[4] M. Hall, A. V. Oppenheim, and A. Willsky, “Time-varying parametric
modeling of speech,” Signal Processing, vol. 5, pp. 267-285, 1983.

[5] R. Charbonnier, M. Barlaud, G. Alengrin and J. Menez, “Results on
AR-modelling of non-stationary signals,” Signal Processing, vol. 12,
pp. 143-151, 1987.

[6] M. Niedzwiecki, “Functional series modeling approach to identification
of nonstationary stochastic systems,” IEEE Trans. Automat. Contr., vol.
33, pp. 955-961, 1988.

[71 M. Niedzwiecki, “Recursive functional series modeling estimators for
identification of time-varying plants — more bad news than good?,” IEEE
Trans. Automat. Contr., vol. 35, pp. 610-616, 1990.

[8] R. B. Mrad, S. D. Fassois, and J. A. Levitt, “A polynomial-algebraic
method for non-stationary TARMA signal analysis — Part I: The
method,” Signal Processing, vol. 65, pp. 1-19, 1998.

[9] A. G. Poulimenos and S. D. Fassois, “Parametric time-domain methods

for non-stationary random vibration modelling and analysis — a critical

survey and comparison,” Mechanical Systems and Signal Processing,

vol. 20, pp. 763-816, 2006.

M. Niedzwiecki, Identification of Time-varying Processes.

Wiley, 2000.

[11] A. H. Sayed, Fundamentals of Adaptive Filtering, Wiley, 2003.

[10] New York:



