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Abstract—Estimating time-frequency domain masks for speech en-

hancement using deep learning approaches has recently become a popular
field of research. In this paper, we propose a mask-based speech

enhancement framework by using concatenated identical deep neural

networks (CI-DNNs). The idea is that a single DNN is trained under

multiple input and output signal-to-noise power ratio (SNR) conditions,
using targets that provide a moderate SNR gain with respect to the input

and therefore achieve a balance between speech component quality and

noise suppression. We concatenate this single DNN several times without
any retraining to provide enough noise attenuation. Simulation results

show that our proposed CI-DNN outperforms enhancement methods

using classical spectral weighting rules w.r.t. total speech quality and

speech intelligibility. Moreover, our approach shows similar or even a little
bit better performance with much fewer trainable parameters compared

with a noisy-target single DNN approach of the same size. A comparison

to the conventional clean-target single DNN approach shows that our
proposed CI-DNN is better in speech component quality and much better

in residual noise component quality. Most importantly, our new CI-DNN

generalized best to an unseen noise type, if compared to the other tested

deep learning approaches.
Index Terms—Speech enhancement, noise reduction, DNN, noisy

speech target
I. INTRODUCTION

Speech enhancement aims at improving the perceived quality and

intelligibility of a speech signal degraded by additive noise. This task

can be very challenging when only a single-channel mixture signal

is available. The classical method to perform single-channel speech

enhancement is to estimate the a priori signal-to-noise ratio (SNR),

which can subsequently be used by way of a spectral weighting rule

[1]–[8]. The decision-directed (DD) method proposed by Ephraim

and Malah [1], or [5], [6], are widespread a priori SNR estimation

approaches, that can be combined with spectral weighting rules

such as the well known Wiener filter (WF) [3], the MMSE log-

spectral amplitude estimator (LSA) [2], and the super-Gaussian joint

maximum a posteriori estimator (SG) [4]. Nevertheless, using these

classical approaches often still leads to poor performance in non-

stationary noise environments [9]. Goldstein et al. [10] proposed a

multistage representation of the Wiener filter which is achieved by

successively decomposing the observed noisy signal onto orthogonal,

lower dimensional subspaces. Tinston and Ephraim [11] showed

that estimating clean speech using the multistage Wiener filter from

the subspace of the obtained noisy speech signal outperforms the

conventional Wiener filter. However, the multistage Wiener filter

approach still faces the same problem in the presence of non-

stationary noise.

Deep learning methods used in speech enhancement tasks have

shown excellent results, even in non-stationary noise, and have

become state of the art [12]–[21]. A regression-based speech enhance-

ment method using deep neural networks is proposed in [18]. Du et

al. [12] proposed a DNN architecture with dual outputs to estimate

the speech features belonging to the target and interfering speakers

from the input mixture signal, which achieves a better generalization

to the unseen interfering speaker. In contrast to use DNNs for a direct

regression task, a time-frequency domain mask can be estimated to

perform speech enhancement making the ideal estimate independent

of the absolute signal level [13], [14], [17]. A complex ratio mask that

can enhance the amplitude spectrogram and estimate the right phase

information is proposed in [17]. Comparing to other mask estimation

methods, using DNNs to directly predict the clean speech signal while

estimating the mask representation implicitly is shown to outperform

the direct estimation of masks for speech separation [15], [16]. For

these deep learning based speech enhancement algorithms, a common

problem is the degradation of performance in unseen noise conditions

[18]–[20]. One method to address this mismatched noise condition

problem is to include many different noise types in the training data

[19], [20]. A drawback of this method is that a very large training

set is needed, e.g., Xu et al. [20] used 104 types of noise, and a

total amount of 100 hours of training data for most experiments to

improve generalization capabilities.

Another challenge in DNN-based speech enhancement is to find

a good tradeoff between speech distortion and noise reduction,

especially for low SNR conditions. Gao et al. [22] proposed to use

progressive learning with SNR-based targets to address this problem.

A novel progressive deep neural network (PDNN) with a parallel

structure of neural networks with less and less noisy targets for each

network and horizontal connections between the layers towards less-

noisy trained DNNs is proposed in [23]. Training of this PDNN is

done one-by-one while freezing the weights of the higher-noise target

networks, until the last parallel network, which is trained with clean

targets. The total spectral estimate output is the average of all these

networks.

In this paper, however, we propose a serial concatenation of

networks in so-called stages, with the specific property that the

network in each stage is identical, hence the name concatenated

identical DNNs (CI-DNNs). The idea is to train a basic DNN module

which can yield some moderate enhancement of the input, in our

case a 5dB target signal-to-noise power ratio (SNR) improvement,

implemented by using additive noise and a respectively configured

target signal. This network is then, e.g., concatenated three times

(i.e., 3 stages), in order to provide a sufficient amount of noise

attenuation. An important aspect is that such a stage DNN must be

trained for multiple input and (enhanced by 5dB SNR improvement,

respectively) output SNRs to operate well both in the first stage and

in all subsequent stages. The idea and major advantage vs. [22], [23]
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Fig. 1. Diagram of the speech enhancement using CI-DNNs; for details of the DNN enhancement stage see Fig. 2
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Ŝℓ �k�

(or training

target)

DNN enhancement stage

Fig. 2. Basic DNN module for speech spectrum enhancement

is to save free (trainable) parameters compared to (deeper) DNNs

with the same number of weights, and thereby to provide better

generalization properties particularly for unseen noise types, which

so far is oftentimes reported to be a major issue in noise reduction

by neural networks.

This paper is structured as follows: Section 2 describes our speech

enhancement system and our novel CI-DNN architecture, along with

training and testing aspects of the CI-DNN. The experimental setup

as well as the results and discussion are presented in Section 3. We

conclude the paper in Section 4.

II. CONCATENATED IDENTICAL DNN

A. Basic DNN Module and New CI-DNNs

We assume the single-channel mixture y�n� � s�n� � d�n� of

the clean speech signal s�n� and the added noise signal d�n� with

n being the discrete-time sample index. Our speech enhancement

system operates in the discrete Fourier transform (DFT) domain.

Therefore, let Yℓ�k�, Sℓ�k�, and Dℓ�k� be the respective DFTs,

and SYℓ�k�S, SSℓ�k�S, and SDℓ�k�S be their DFT magnitudes, with

frame index ℓ > L � �1,2, . . . ,L� and frequency bin index k > K �

�0,1, . . . ,K�1� with DFT size K. In this paper, we only enhance

the magnitude spectrogram of the noisy speech and use the unaltered

noisy speech phase for reconstruction. Then, we can write our task

as Ŝℓ �k� � Yℓ�k� �Mℓ �k� , (1)

with Mℓ �k� > �0,1� and Ŝℓ �k� being the real-valued spectral

mask and the estimated enhanced speech spectrum, respectively. As

proposed in [15], [16], we predict the unknown enhanced amplitude

speech spectrum TŜℓ �k�T, while estimating the spectral mask Mℓ �k�

implicitly as shown in Fig. 2. The “ NORM ” operation in Fig. 2

represents a zero-mean and unit-variance normalization over the

frame direction based on statistics collected on the training set, which

are also used in the test phase.

Based on this single-stage feedforward basic DNN module, we

build a speech enhancement system using the newly proposed serially

concatenated identical DNN (CI-DNN) structure as shown in Fig. 1.

Both topology and weights of each DNN enhancement stage are the

same, in some more detail depicted as shown in Fig. 2. The idea is

to train a single basic DNN module which can offer some moderate

enhancement of the input, in our case a 5dB SNR improvement. Then

we concatenate the same module several times in so-called stages

with stage index r > R � �1,2, . . . ,R� without any additional re-

training. During inference, the DNN enhancement stage will enhance

the input of stage r, and the output of stage r serves as respective

input for stage r�1. Hence, we divide our speech enhancement task

into multiple sub-tasks, where the total number of stages can be

decided by the total target SNR improvement. In this work, each

stage is designed to improve the SNR by 5dB, so the 2-stage and 3-

stage CI-DNNs will ideally offer 10dB and 15dB SNR improvement,

respectively. Another factor that can be influenced by the number of

stages is the tradeoff between noise reduction and speech distortion.

Being able to decide on the number of stages based on development

set performance, without the need for retraining, makes our proposed

CI-DNN very flexible to adapt for tasks with different requirements.

The maximum number of stages we used for this work is R � 3.

The final stage output ŜR,ℓ �k� is transformed to the time domain by

IFFT and overlap add (OLA) as shown in Fig. 1.

B. New Approach Training

The most important aspect to train a basic DNN module that can

be concatenated as shown in Fig. 1, is to make sure the basic DNN

is trained under multiple input and output SNR conditions to enable

it to operate well both in the first stage and in all subsequent stages.

To train our basic module shown in Fig. 2, we use the input noisy

spectrogram Yℓ�k� in six SNR levels ranging from �5dB to 20dB

with a step size of 5dB. The corresponding enhanced noisy targets

Ŝ
target

ℓ
�k� have 5dB higher SNR, which means the corresponding

SNR levels range from 0dB to 25dB with the same 5dB step size.

The SNR level is measured according to ITU P.56 [24]. We define

the loss function for each frame ℓ as

Jℓ �
1

K
Q

k>K

�TŜℓ �k�T � TŜ
target

ℓ �k�T�
2

, (2)

with TŜℓ �k�T being calculated using (1). Given a DFT length of K �

256, the input size of the basic DNN module is 5�129 � 645, which

includes 2 left and 2 right context frames. There are 5 hidden layers

for each basic DNN module with a succeeding size of 1024 � 512 �

512 � 512 � 256. All these hidden layers use leaky rectified linear

units (ReLU) as activation function and a dropout rate of p � 0.2.

The size of the output layer is K

2
�1 � 129, determined by our target

dimensionality. We use a sigmoid activation function for the output

layer to make sure the value of the mask Mℓ �k� is between 0 and

1. All possible forward residual skip connections are added to the

layers with matched dimensions, which results to 3 bypasses in total

to ease the vanishing gradient problem during training [25]. Batch

normalization is used for each layer except for the input layer, and

we use a minibatch size of 128 for all trainings.

C. New Approach Test

As shown in Fig. 1, the input noisy speech spectrum Yℓ�k� will

be enhanced progressively as

ŜR,ℓ �k� � Yℓ�k� �
R

M

r�1

Mr,ℓ�k�, (3)

with Mr,ℓ�k� being the estimated mask in stage r. Since the identical

basic DNN module uses the same number of context frames in each

stage, an additional amount of context is needed the more stages are

employed. As an example, the 2-stage CI-DNN needs 9 frames at

the input of the first stage, which includes 4 left and 4 right context

frames to produce one output frame at the final stage. This number

will increase to 13 frames including 6 left and 6 right context frames

for a 3-stage CI-DNN.

III. EXPERIMENTAL VALIDATION

A. Database and Measures

The clean speech data for our training and test is taken from

the Grid Corpus [26]. To make our CI-DNNs speaker-independent,
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we randomly select 16 speakers, containing 8 male and 8 female

speakers, and use 160 sentences per speaker for the basic DNN

module training. For evaluation, four different speakers are chosen,

two male and two female, with 10 sentences each.

Three types of superimposed noise are used to construct the

training data: Pedestrian noise (PED), café noise (CAFE), and street

noise (STR) which are obtained from the CHiME-3 dataset [27].

We train the basic DNN module under multiple input and output

SNR conditions containing 6 different SNR levels. Thus, the training

material consists of 16 � 160 � 3 � 6 � 46080 sentences. From the

overall training material, 20% of the data is used for validation and

80% is used for actual training. All the speech and noise signals have

a sampling rate of 16kHz and are transferred to the DFT domain with

K � 256 using a periodic Hann window with 50% overlap.

The test data is constructed using PED and CAFE noise, however,

extracted from different files. Speech material is from unseen speak-

ers. To additionally perform a noise-type independent test, we also

create test data using bus noise (BUS), taken also from the CHiME-3

data, with this noise type not being seen during training. All the test

data sets contain SNR levels from �5dB to 20dB with a step size

of 5dB. The evaluation is based on both the filtered clean speech

component s̃�n�, the filtered noise component d̃�n�, and also the

enhanced speech signal ŝ�n�. Using (3), S̃ �ℓ, k� and D̃ �ℓ, k� are

obtained, replacing Yℓ�k� by Sℓ�k� and Dℓ�k�, respectively.

In this paper, we use the following measures [28]:

1) SNR improvement: ∆SNR � SNRout � SNRin, measured in dB

2) Speech quality (PESQ MOS-LQO) is measured using s�n� as

reference signal and either the filtered clean speech component s̃�n�

or the enhanced speech ŝ�n� as test signal according to [29], [30],

being referred to as PESQ�s̃� and PESQ�ŝ�, respectively.

3) Segmental speech-to-speech-distortion ratio (SSDR):

SSDR �

1

SL1S

Q

ℓ>L1

SSDR�ℓ� �dB�

with L1 ` L, denoting the set of speech-active frames [28],

and using SSDR�ℓ� �max �min �SSDR�

�ℓ�,30dB� ,�10dB� ,with

SSDR�

�ℓ� � 10 log
10

��

P

n>Nℓ

s2�n��~�
P

n>Nℓ

�̃s�n �∆��s�n��
2
��, with

Nℓ denoting the sample indices n in frame ℓ, and ∆ being used to

perform time alignment for the filtered signal s̃�n�.

4) The weighted log-average kurtosis ratio (WLAKR) measures the

noise distortion (especially for musical tones) using d�n� as reference

signal and the filtered noise component d̃�n� as test signal according

to ITU P.1130 [31], [32]. A WLAKR score that is closer to zero

indicates less noise distortion, whereas being far away (+ or -) from

zero indicates strong noise distortion [32]. In our analysis we will

show averaged absolute WLAKR values.

5) Short-time objective intelligibility (STOI) measures the intelligi-

bility of the enhanced speech as proposed in [33].

We group these measurements to noise component measures

(∆SNR and WLAKR), speech component ones (SSDR and

PESQ�s̃�), and total performance measures (PESQ�ŝ� and STOI).

B. Baseline Methods

The baseline methods include the classical LSA, SG, and WF

spectral weighting rules combined with the DD approach for a priori

SNR estimation and minimum statistics (MS) [34] for noise power

estimation as mentioned before. To compare with the conventional

mask estimation methods, we also train a so-called single DNN

for speech enhancement similar to Fig. 2, but potentially deeper.

We construct three single DNNs named 1 stage (same as CI-DNN,

1.23M weights), “ 2 stage ” (2.43M weights), and “ 3 stage ” (4.55M

weights). These three single DNNs have a similar number of weights

compared to the 1-stage, 2-stage, and 3-stage CI-DNNs, respectively,

but all the weights in these baseline single DNNs are free weights

that are trainable.

As mentioned before, the number of input frames required to obtain

one output frame is different for CI-DNNs with different numbers of

stages. To allow a fair comparison, the input size of the “ 2 stage ”

and “ 3 stage ” single large DNNs are 9�129 � 1161 with 4 left and

4 right context frames, and 13 � 129 � 1677 with 6 left and 6 right

context frames, respectively.

There are 6 hidden layers for the “ 2 stage ” single large DNN with

sizes of 1400�800�512�512�512�256. The “ 3 stage ” single large

DNN contains 7 hidden layers with sizes of 1800�750�512�512�

512�512�256. Both networks have an output layer size of 129 using

sigmoid activation functions. Except for the output layer, all layers

use the same leaky ReLU activation functions. The same dropout rate

p � 0.2 is used in all hidden layers and batch normalization is used

except for the input layer. All possible bypasses are employed, which

results in a total of 3 and 6 bypasses for “ 2 stage ” and “ 3 stage ”,

respectively. The 1 stage network has the same structure as our basic

DNN module with identical weights.

We train these three baseline single DNNs using either clean

speech or noisy speech as targets, separately. For the noisy target

training, the target noisy speech provides 5dB, 10dB, and 15dB

SNR improvement for the 1 stage, “ 2 stage ”, and “ 3 stage ” single

DNNs, respectively.

C. Experimental Results and Discussion

We report on PED noise, CAFE noise, and on unseen BUS noise

separately, both for all baselines and our proposed CI-DNNs. The

measures are averaged over all speakers and all SNR levels, and are

shown in Tables I, II, and III. Additionally, we report the performance

at SNR � �5dB, where results are shown in Tables IV, V, and VI.

In each column, the two best results are greyshaded .

First, we look at PED noise and CAFE noise which are the seen

noise types (not seen noises!) in CI-DNN and single DNN training.

The classical spectral weighting rule baselines LSA, SG, WF are

strong in speech component quality, particularly at low SNR, which is

reflected in very good PESQ�s̃� performance as shown in Table IV

and V. However, they are all very bad in terms of residual noise

quality (the by far highest WLAKR values for this measurement in

all tables), and in terms of speech intelligibility, which shows an

almost 0.1 points lower STOI score compared to the other methods.

Inspecting the single DNN trained with clean speech target, we find

that this method always shows strong performance in ∆SNR and in

total quality measures (see Tables I, II, IV, and V), but low fidelity of

the speech component measures (SSDR and PESQ�s̃�), interestingly.

Although PESQ�ŝ� accepts this due to the high noise suppression, the

clean target training seems to provide unbalanced results. Moreover,

the residual noise quality, particularly at low SNRs, suffers audibly,

which is also reflected by more than ten times higher WLAKR scores

compared to other DNN-based or CI-DNN-based methods.

Now, we discuss the single DNN trained with noisy speech targets

and our proposed CI-DNN (comparisons between DNNs and CI-

DNNs with a similar number of weights). The single DNN trained

with noisy target shows very good STOI, speech and noise component

quality — as is the case with our new CI-DNN. Regarding the speech

component measures, the noisy-target single DNN is a bit better in

SSDR, while CI-DNN is a bit better in PESQ�s̃�. The noisy-target

single DNN provides a bit more ∆SNR in very noisy condition

and on average, but not consistently so. Finally, concerning total
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TABLE I
PERFORMANCE FOR PED NOISE, ALL SNRS AVERAGED; ∆SNR AND

SSDR ARE MEASURED IN DB. TWO BEST ARE GREYSHADED .

Method
Noise Component Speech Component Total

∆SNR WLAKR SSDR PESQ�s̃� PESQ�ŝ� STOI

LSA 3.08 0.66 15.05 3.40 2.09 0.62

SG 2.73 0.70 15.33 3.37 2.06 0.62

WF 3.85 0.75 13.52 3.45 2.09 0.61

Single DNN

clean target

1 stage 6.67 0.11 13.24 3.20 2.45 0.72

“2 stage” 6.71 0.28 13.33 3.20 2.55 0.72

“3 stage” 6.78 0.20 13.46 3.21 2.51 0.72

Single DNN

noisy target

1 stage 2.99 0.02 14.24 3.52 2.11 0.70

“2 stage” 5.15 0.02 13.87 3.48 2.25 0.71

“3 stage” 6.40 0.05 13.73 3.40 2.37 0.72

New CI-DNN

∆SNR target: +5dB

for each stage

1 stage 2.99 0.02 14.24 3.52 2.11 0.70

2 stage 5.07 0.02 13.58 3.52 2.28 0.71

3 stage 6.03 0.03 12.74 3.47 2.43 0.71

TABLE II
PERFORMANCE FOR CAFE NOISE, ALL SNRS AVERAGED; ∆SNR AND

SSDR ARE MEASURED IN DB. TWO BEST ARE GREYSHADED .

Method
Noise Component Speech Component Total

∆SNR WLAKR SSDR PESQ�s̃� PESQ�ŝ� STOI

LSA 3.48 0.61 14.43 3.40 2.17 0.63

SG 3.29 0.65 14.65 3.38 2.14 0.62

WF 4.30 0.68 12.90 3.48 2.18 0.62

Single DNN

clean target

1 stage 5.73 0.11 12.87 3.22 2.52 0.71

“2 stage” 5.99 0.13 12.94 3.19 2.58 0.71

“3 stage” 6.01 0.11 13.02 3.19 2.55 0.72

Single DNN

noisy target

1 stage 2.72 0.02 13.71 3.48 2.19 0.71

“2 stage” 4.62 0.02 13.39 3.45 2.33 0.71

“3 stage” 5.78 0.04 13.29 3.37 2.44 0.72

New CI-DNN

∆SNR target: +5dB

for each stage

1 stage 2.72 0.02 13.71 3.48 2.19 0.71

2 stage 4.54 0.03 13.04 3.48 2.36 0.71

3 stage 5.97 0.03 12.17 3.41 2.50 0.71

TABLE III
PERFORMANCE FOR UNSEEN BUS NOISE, ALL SNRS AVERAGED; ∆SNR

AND SSDR ARE MEASURED IN DB. TWO BEST ARE GREYSHADED .

Method
Noise Component Speech Component Total

∆SNR WLAKR SSDR PESQ�s̃� PESQ�ŝ� STOI

LSA 4.68 0.56 16.08 3.57 2.71 0.72

SG 3.57 0.63 16.21 3.62 2.69 0.72

WF 6.24 0.68 14.62 3.76 2.71 0.71

Single DNN

clean target

1 stage 5.01 0.06 15.42 3.36 2.58 0.77

“2 stage” 3.95 0.17 15.45 3.33 2.57 0.77

“3 stage” 3.78 0.13 15.54 3.34 2.55 0.77

Single DNN

noisy target

1 stage 1.90 0.03 15.96 3.47 2.35 0.77

“2 stage” 2.90 0.05 15.78 3.46 2.48 0.77

“3 stage” 3.67 0.08 15.71 3.41 2.54 0.77

New CI-DNN

∆SNR target: +5dB

for each stage

1 stage 1.90 0.03 15.96 3.47 2.35 0.77

2 stage 4.02 0.04 15.18 3.49 2.56 0.77

3 stage 5.86 0.05 14.14 3.44 2.71 0.76

PESQ�ŝ�, CI-DNN is always (at low SNR, and average over SNR

conditions) slightly ahead of the DNN with noisy-target training (for

two or more stages, of course). Our proposed CI-DNNs only have 1~2

or 1~3 of the trainable weights compared to the noisy-target single

DNN to achieve this performance. In summary, for noise types that

have been seen in training, the CI-DNN is overall slightly ahead of

any here investigated baseline single DNN in terms of total speech

quality.

Secondly, we look at the measurement results for the unseen noise

type BUS. As expected, the classical spectral weighting rule baselines

perform similarly bad in BUS noise concerning background noise

quality (WLAKR scores) and total speech intelligibility (STOI). For

the neural network approaches, the BUS noise type has not been

seen in training. They all perform nicely and equally well in STOI

as shown in Tables III and VI. The relative performance of the DNN

trained with noisy targets vs. the DNN trained with clean targets is

the same, whether we test with seen or unseen noise types, again

TABLE IV
PERFORMANCE FOR PED NOISE AT SNR� �5 DB; ∆SNR AND SSDR

ARE MEASURED IN DB. TWO BEST ARE GREYSHADED .

Method
Noise Component Speech Component Total

∆SNR WLAKR SSDR PESQ�s̃� PESQ�ŝ� STOI

LSA 2.22 0.66 5.86 2.54 1.34 0.41

SG 2.02 0.66 5.47 2.72 1.31 0.40

WF 2.41 0.75 4.42 2.87 1.33 0.41

Single DNN

clean target

1 stage 6.16 0.15 3.96 2.21 1.57 0.54

“2 stage” 7.00 0.27 4.02 2.20 1.56 0.54

“3 stage” 7.21 0.30 4.06 2.18 1.57 0.55

Single DNN

noisy target

1 stage 2.18 0.02 4.88 2.51 1.41 0.54

“2 stage” 4.57 0.02 4.53 2.46 1.45 0.55

“3 stage” 6.26 0.02 4.26 2.39 1.49 0.55

New CI-DNN

∆SNR target: +5dB

for each stage

1 stage 2.18 0.02 4.88 2.51 1.41 0.54

2 stage 4.40 0.03 4.51 2.58 1.48 0.55

3 stage 6.26 0.05 4.02 2.58 1.54 0.54

TABLE V
PERFORMANCE FOR CAFE NOISE AT SNR� �5 DB; ∆SNR AND SSDR

ARE MEASURED IN DB. TWO BEST ARE GREYSHADED .

Method
Noise Component Speech Component Total

∆SNR WLAKR SSDR PESQ�s̃� PESQ�ŝ� STOI

LSA 2.84 0.59 5.55 2.60 1.43 0.42

SG 3.17 0.60 5.08 2.75 1.40 0.41

WF 3.14 0.65 4.19 2.99 1.41 0.41

Single DNN

clean target

1 stage 5.87 0.13 3.68 2.20 1.59 0.53

“2 stage” 6.28 0.20 3.75 2.15 1.58 0.54

“3 stage” 6.50 0.24 3.75 2.15 1.59 0.54

Single DNN

noisy target

1 stage 1.99 0.02 4.38 2.45 1.43 0.55

“2 stage” 4.11 0.02 4.18 2.40 1.47 0.56

“3 stage” 5.76 0.01 4.02 2.33 1.52 0.56

New CI-DNN

∆SNR target: +5dB

for each stage

1 stage 1.99 0.02 4.38 2.45 1.43 0.55

2 stage 3.76 0.04 4.11 2.50 1.50 0.55

3 stage 5.35 0.04 3.73 2.51 1.57 0.55

TABLE VI
PERFORMANCE FOR UNSEEN BUS NOISE AT SNR� �5 DB; ∆SNR AND

SSDR ARE MEASURED IN DB. TWO BEST ARE GREYSHADED .

Method
Noise Component Speech Component Total

∆SNR WLAKR SSDR PESQ�s̃� PESQ�ŝ� STOI

LSA 5.10 0.59 8.20 3.03 1.68 0.56

SG 5.09 0.60 7.75 3.22 1.64 0.56

WF 6.42 0.69 6.63 3.37 1.69 0.55

Single DNN

clean target

1 stage 6.07 0.01 7.09 2.55 1.64 0.65

“2 stage” 4.47 0.15 7.11 2.43 1.57 0.64

“3 stage” 4.73 0.11 7.19 2.43 1.57 0.64

Single DNN

noisy target

1 stage 2.14 0.01 7.42 2.59 1.40 0.65

“2 stage” 3.48 0.03 7.36 2.60 1.48 0.65

“3 stage” 4.57 0.07 7.30 2.56 1.55 0.65

New CI-DNN

∆SNR target: +5dB

for each stage

1 stage 2.14 0.01 7.42 2.59 1.40 0.65

2 stage 4.46 0.03 7.34 2.72 1.51 0.66

3 stage 6.50 0.04 7.00 2.75 1.66 0.65

disqualifying the clean target training due to its bad residual noise

quality performance.

Comparing the noisy-target single DNN to the new CI-DNN in the

unseen BUS noise type, however, we make surprising observations:

The speech component quality is roughly comparable as before

(SSDR better for DNN with noisy target, PESQ�s̃� better with CI-

DNN), so is also the noise component quality (WLAKR). However,

the 3-stage CI-DNN clearly excels the respective single DNN in

∆SNR. In the 3-stage case, the total PESQ�ŝ� of the CI-DNN is

on average over all SNRs by 0.17 points better than that for the

single DNN.
IV. CONCLUSIONS

In this paper, we proposed serially concatenated identical DNNs

(CI-DNNs), where each basic DNN module (stage) can offer some

moderate enhancement of the input. Our proposed CI-DNNs out-

perform the classical spectral weighting rules both in total speech

quality and speech intelligibility. The CI-DNN also shows more
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balanced performance than the conventional clean-target single DNN.

Comparing with the noisy-target single DNN, our proposed CI-DNN

offers quite similar or even a bit better performance concerning total

PESQ�ŝ�, but with only 1~2 or 1~3 of the trainable weights. Under

a comparable noise and speech component quality, our proposed CI-

DNNs also generalize better to an unseen noise type by offering

higher total PESQ�ŝ� and SNR improvement.
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