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Abstract—Heavy machine tools are used in numerous indus-
trial manufacturing processes. Avoiding unplanned maintenance
time is crucial and can be achieved by continuous condition
monitoring. A more targeted condition monitoring is possible
if the operating state of a machine tool is known (e.g. standstill,
neutral or cut). However, many manufacturers of control units do
not release any information about the machine’s operating state.
For this reason, we investigated a system-independent approach
to determine the operating state in real-time in less than 1 ms.
This low runtime is necessary for machine state classification.
Since most machine tools vary in individual components, the
proposed state detection uses learning algorithms based on the
machine’s vibration characteristics.

In this work we propose the Random Forest algorithm because
of its reliable classification performance while keeping explain-
ability of each prediction. Facing the real-time requirements, the
Random Forest model has been adapted to an embedded device
with very limited resources. Thus, the model prediction has to
work with low resource consumption in a very low runtime and
without loss in accuracy. We show that this approach is suitable
for determining machine operating states in real-time in less than
700 µs with an average accuracy of 96 %.

Index Terms—Random Forest, Machine Tool, Classification,
State Estimation, Real-Time

I. INTRODUCTION

INdustrial manufacturing processes are highly optimized
and automated work flows for the production of vari-

ous goods. In particular, the production lines of automobile
manufacturers are precisely matched to the individual work
steps. Heavy machine tools are used in these manufacturing
processes e.g. to mill an engine block from a single piece of
metal.

Unplanned maintenance is costly due to high supply chain
integration and must be kept to a minimum. This can be
achieved by continuous condition monitoring. The target is to
make reliable statements about the current machine condition
in order to plan the next maintenance periods.

However, for targeted condition monitoring it is very im-
portant to know the current operating state of a machine. For
example, an industrial milling machine might have various
operating states such as standstill or tool change, rapid tra-
verse with rotating shaft (denoted by neutral) and incision in
work piece (cut). When determining these states, however, it
is rarely possible to get these information by the machine’s
control unit since many manufacturers of control units do not
release any information about the machine’s operating state.

We investigate how the machine’s operating state can be
determined in real-time using the vibration signal of a sensor
mounted directly above the rotating shaft of a milling spindle.
This low runtime is necessary for targeted condition monitor-
ing. The rotation signal is also taken into account. Since most
machine tools, especially in larger production plants, vary in
individual components, different machines have different vi-
bration characteristics. For this reason, we considered machine
learning algorithms to learn a vibration model for a particular
milling machine. In order to meet the real-time requirements,
such a model must be able to perform all decisions in less than
1 ms on an embedded device with very limited resources.
We used the Random Forest algorithm based on Decision
Trees [1] to determine the machine state because of its reliable
classification performance while keeping explainability of each
prediction. However, interpreting machine learning models is
a wide area of research. Thus, we did not focus on explaining
model decisions in this work. For classification, we identified
and implemented appropriate features based on the vibration
signal. Afterwards, we implemented and examined the Ran-
dom Forest algorithm to run properly and fault-tolerant on
an embedded device with limited memory and computational
resources in real-time.

II. RELATED WORK

Machine state classification is a wide area of research
and used in various domains [2]–[6]. There are different
approaches to perform adaptive condition monitoring on indus-
trial milling machines [7], [8]. For example, Widodo & Yang
[9] examine different machine learning approaches and use
Support Vector Machines (SVM) [10] for condition monitoring
and fault diagnosis. Prieto et al. [11] use a neural network
to detect bearing degradation relying on time-based vibration
features. Our approach does not describe condition monitoring
itself, but rather a more targeted detection of the machine state
so that condition monitoring might be carried out much more
precisely with the aid of specialized machine learning models.

In recent years, Neural Networks and Convolutional Neural
Networks (CNN) in particular enjoy growing popularity. Both
Ince et al. [12] and Abdeljaber et al. [5] use one-dimensional
CNNs for motor fault detection. The data stream of the
vibration signal is processed in time-based domain directly. A
major disadvantage of conventional Neural Networks, CNNs
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and other black box methods like SVMs is their explainability.
Given an input signal X a prediction Y is generated. However,
it is not clear why the model comes to its result. This topic
has already been subject of research in the past with rule-
based Neural Networks [13]. Nevertheless, these metrics are
unsuitable for reliable machine state prediction due to the
much more complex implementation and computation effort.

We propose the Random Forest algorithm [1] to perform
state recognition. A Random Forest consists of an ensemble
of Decision Trees [14]. In the field of state detection and
condition monitoring of wind turbines, the work of Kusiak
et al. [3] already shows that the Random Forest algorithm
offers high accuracy compared with other machine learning
algorithms. For simple use cases, Neural Networks and De-
cision Trees offer nearly the same performance in accuracy.
However, Decision Trees are much easier to explain and debug
[15] by simply examining the ”decision path” computed for
a single prediction. For an ensemble method like Random
Forest, the feature contributions can be computed to determine
the influence of each variable [16].

The original Decision Tree and thus the Random Forest
algorithm are binary classifiers. However, the application of
classifying machine states needs more different states than two
and thus leads to a multi class classification problem. This is
addressed in a one vs. all manner. The forest for each class
either accepts or declines its class by a majority voting [17].

The Random Forest model must fit to the real-time require-
ments. In a time frame of max. 1 ms (from arrival of the first
sample) the model should make a decision about the current
machine state. In general, it is possible to process data in real-
time with Random Forests [18], [19].

III. RANDOM FOREST FOR REAL-TIME STATE ESTIMATION

A Random Forest consists of an ensemble of multiple
uncorrelated Decision Trees. A Decision Tree is a non-metric
learning model which creates rules during training to map the
input to a specific classification result. The Random Forest
predicts a class y given feature vector ~x = (x1, ..., xK)T with
K features by the highest class vote of its trees. Each tree is
trained by a subset Ds that is randomly sampled with replace-
ment from the whole training set D = {(~x1, y1), (~x2, y2), ...}
with Ds ⊆ D. Each subset is sampled so that the amount
of classes are balanced. The greater the subsets for each
Decision Tree the higher the representational power of each
model gets. However, large training subsets result in a high
training duration. Thus, the size of each subset is part of our
examinations.

For continuous features, the nodes in a Decision Tree divide
the input space by a given feature xk ∈ ~x into two subsets
which are either greater or lower than a specific threshold. The
threshold as well as the index k of the feature for a node are
determined by the information gain IG [20], [21] with

argmax
k

IG(Ds, k). (1)

The information gain is the criterion for building up all
branches in a tree until either the maximum tree depth is

reached or no more information gain can be achieved. In
these two cases, a leaf is created at the end of the branch.
This leaf contains the class that occurs most frequently in the
remaining subset at the end of the branch. We use Reduced
Error Pruning (REP) in order to avoid overfitting [14], [22].
Starting at the bottom of a tree, each node is replaced with
the majority class vote of subsequent leaves. If the prediction
accuracy on a dedicated test set is not affected then the change
is kept. This training method is useful for setting up a Decision
Tree which is able to distinguish between two classes +1 and
−1. For multiple classes, the one vs. all method is applied.
The used Random Forest model is shown in Fig. 1.

Features

The state detection bases on the vibration signal of the
machine. The vibration signal is sampled at a frequency f so
that f samples (denoted by s) are recorded per second. How-
ever, the Random Forest algorithm needs dedicated features in
order to determine the machine state. Thus, all samples s are
windowed in consecutive time slots t with a window length
n (denoted by ~st). For each time slot t, a feature vector ~xt is
computed. This is demonstrated in Fig. 2.

The vibration signal is expected to change depending on
the operating state of the milling machine (standstill, neutral,
cut). We observed homogeneous and uniform vibrations with
states standstill and neutral and irregular deflections when
cutting into a work piece. These vibration characteristics can
be measured with the polygon length L of the signal in a time
window with

L(~st) =
n−1∑
i=1

√
(si − si+1)2 + 1 (2)

and the amount of sign changes related to a zero level s0 with

numsgn(~st) =

n−1∑
i=1

{
1 if (si − s0)(si+1 − s0) < 0

0 else
. (3)

We expect these features to vary most between different
machine states. The measured engine rotation speed (denoted
as rpm) as well as the mean µ and variance σ2 of the vibration
signal are also taken into account and added to the feature
vector ~xt

~xt = (rpm, µ, σ2, L, numsgn)T . (4)

For computing the polygon length L of a signal, it is
necessary to perform a square root operation for each con-
secutive samples (cf. (2)). This causes n − 1 square root
operations for a sample window of size n. Facing the real-
time requirements, a floating point square root on an ARM®

Cortex®-M4 with a dedicated Floating Point Unit (FPU) e.g.
needs 14 instruction cycles while an addition operation only
needs 1 cycle. On other devices without a dedicated FPU, the
amount of cycles needed for a square root operation (integer
or float) is considerably larger. Due to the high computational
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Fig. 1. Random Forest model to distinguish between multiple classes by a given feature vector ~x. Each forest either accepts or declines the class it was
trained for. The class with the majority of votes is accepted.

Fig. 2. Vibration signal sampled by an Analog-Digital Converter (ADC). The
signal is separated into consecutive time slots of size n. For each time slot t,
a feature vector ~xt is computed.

costs of such an operation, the used polygon length L for ~xt
is approximated for large differences s′ = |si − si+1| by

lim
s′�1

L(~st) =
n−1∑
i

|si − si+1|. (5)

Features in the frequency domain like Power Spectral
Density (PSD) computed by a Fast Fourier Transformation
(FFT) could also be taken into account. FFT algorithms have
a very low runtime and are suitable for real-time applications.
For windowed data, a Short Time FFT (SFFT) or a Wavelet
Transformation (e.g. Gabor-Wavelet) are common concepts

to get frequency features while preserving time information.
However, internal investigations based on a Principal Compo-
nent Analysis (PCA) have revealed no additional information
content of these frequency features compared to the previously
mentioned time based features.

IV. EMPIRICAL EVALUATION

A. Data Recording and Hyperparameter Setup

We performed several vibration measurements of a milling
spindle and classified them by their states (standstill, neutral,
cut) to get a training data set. State transitions or the combi-
nation of different machine configurations are not considered.
The recorded data is considered to be a homogeneous and
equally distributed set of these different states to represent
real operation mode. For this purpose, measurements with
rotation speeds at 0 (standstill only) and 5,000 rpm have
been recorded. The sampling frequency was 1 MSample/s
(1,000,000 samples per second). The whole setup is shown
in Table I and Fig. 3.

To get the best hyperparameters (model configuration pa-
rameters) for the model, the amount of trees for each class,
the size of training subsets Ds for each Decision Tree and
the window size n are varied and examined by their influ-
ence on the resulting prediction accuracy. On the basis of
these parameters, we performed a Grid Search hyperparameter
optimization (training and evaluation of several predefined
combinations of hyperparameters) and a 5x2 cross validation
for each configuration setup.

We measure a correlation of 0.81 between the size of
training subsets Ds and prediction accuracy (with a p-value
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TABLE I
EXPERIMENTAL SETUP OF MICROPROCESSOR AND RANDOM FOREST

CONFIGURATION.

Device STM32F207 Nucleo-144
Processor ARM® Cortex®-M3 @ 120 MHz
Power supply 5V with max. 300 mA
A/D converter 3 SAR A/D @ 15 MHz
A/D resolution 12 bit
A/D record 3 record cycles with

DMA Double Buffer Mode enabled
Vibration sensor ADXL 1002 MEMS @ 3.3V
Measurement card NI PC 6115 @ ±10V
Rotation speed 5,000 rpm

Size of Ds 750 samples
Amount of trees 9 per class (27 total)
Window size n 512

Fig. 3. Setup with milling spindle, a microprocessor to detect machine states
and related measurement devices.

of > 0.01 %). This offers a significant and strong positive
correlation and thus leads to the assumption that the overall
prediction accuracy highly depends on the amount of training
data. The amount of trees per class and the window size n
have a low correlation of 0.34 and 0.28 to prediction accuracy
(with p-values of 1 % and 3 %) respectively. Their impact is
not as important as the size of each training subset. In other
terms, the used Random Forest model does neither need a
huge amount of trees nor a big (and thus large) window size
n to get a fairly good trade-off between prediction accuracy
and size and thus runtime.

B. Accuracy & Runtime on the Embedded Device

Based on the hyperparameter investigations, we trained a
Random Forest model with 9 Decision Trees per class, a
window size n of 512 and a training subset size of 750 samples
per tree. This model was flashed onto an embedded device
(cf. Table I) and should determine the states of a milling
machine during operation in real-time. For each machine state,
we configured a digital output of the microcontroller and
connected it to the NI PC 6115 measuring card in order
to observe the currently predicted state. The vibration signal
was recorded with the first Analog-Digital Converter (ADC)
connected to the board’s DMA with double buffer mode
enabled (recording and computing data simultaneously with
two separated data buffers). The examinations are splitted into
runtime and performance measurements in the following.

1) Runtime examinations: The ADC is driven at 15 MHz
sampling frequency with 12 bit resolution and 3 cycles per

TABLE II
CONFUSION MATRIX AND ACCURACY OF EACH STATE.

actual:
expected: standstill neutral cut

amount of time frames 37,204 43,078 41,635
standstill 37,204 0 0
neutral 0 43,044 4,951
cut 0 34 36,680
unknown 0 0 4
accuracy 1.0 0.999 0.881

sample. At a window size of 512, this leads to a theoretical
sampling time of tADC = 512µs. The DMA overhead is not
included. Because of the DMA’s double buffer mode, it is
possible to record the signal while processing the previous
window. The feature calculations and the state classification
must be finished before the new window is recorded com-
pletely. Otherwise, the feature calculations are inconsistent.
Therefore, the algorithm has to be in compliance with the
following constraints:

ttotal = tADC + tfeatures + tclassification (6)
subject to tfeatures + tclassification ≤ tADC. (7)

To measure the required conversion time of the ADC for a
single time window, a trigger pulse is applied to an output of
the microcontroller after each recorded time window. With this
trigger, we measured a frequency of 0.97 kHz for sampling
time tADC. One period thereby corresponds to two recorded
time frames. Thus, the real sampling time including overhead
is given by tADC = 515.46µs, which is equivalent to a
sampling frequency of approx. 1 MSample/s.

As a next step, we repeated this procedure to determine
the required time for calculating the features of a time frame.
This was measured with ADC disabled. The evaluation of the
trigger for computing the features has shown a frequency of
3.15 kHz. Therefore, the feature calculation time is given by
tfeatures = 158.73µs, while the trigger impulse for the pure
classification time oscillates at 20.9 kHz. The classification
duration is thus given by tclassification = 23.92µs, so that
tfeatures + tclassification = 182.65µs , which fulfills the restriction
of (7). The total time from the start of the time frame sampling
until the state decision is therefore given by ttotal = 698.11µs.
After classification, the processor waits approx. 332 µs for
a new time frame. This leads to 1,940 model decisions per
second and also allows larger Random Forest models with a
higher amount of Decision Trees to reduce the CPU idle time.

2) Accuracy: We have recorded a test data set with the
previously described setup (cf. Fig. 3 and Table I) and mea-
sured the accuracy of the Random Forest model in online
operation mode The detailed classification and accuracy results
are presented as a confusion matrix in Table II (predicted
states over expected states). The average accuracy is given
with 96 %. Nearby none of the recorded samples are classified
as unknown. While the detection of the states standstill and
neutral have a very high accuracy, approx. 11.9 % of the
recorded cut samples are still classified as neutral.
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By examining the recorded classification trigger it is re-
markable that most of the misclassified states are not clustered
but equally distributed over the recording time. Thus, it might
be advantageous to issue a state transition only after more
than one consecutive model predictions. We performed new
measurements with this method and achieved an average
accuracy of 99.8 % with the drawback of a higher runtime of
1.214ms which however violates the real-time constraints. The
amount of misclassified cuts is mainly lower with only 0.57 %
while none of the time frames were rejected as unknown.

In summary, the prediction of a machine state could be
computed in less than 700 µs. This is significantly lower than
the restriction of max. 1 ms. We achieved a mean accuracy of
96 % which is sufficient for this application.

V. CONCLUSION

It is important to know the operating state of machine tools
for targeted condition monitoring. In this work, determining
the current state should be done for milling machines based on
their rotation and vibration signals in real-time in less than 1
ms. However, each machine has its own characteristics due to
design, size and miscellaneous features. Therefore, we trained
a Random Forest model onto a milling machine to perform the
operating state detection. The major benefits of this algorithm
are its explainability of decisions for each underlying Decision
Tree, fast computations and ease of implementation.

For this purpose, we identified and examined several fea-
tures of the vibration input signal due to runtime and infor-
mation content. We identified the Random Forest method as
a promising approach and modified it due to the requirements
of a low runtime and resources consumption.

The examinations have shown a prediction runtime of below
700 µs with an average accuracy of 96 % on a STM32F207
Nucleo-144 with ARM® Cortex®-M3 at 120 MHz and a sam-
pling frequency of 1 MSample/s. It was possible to improve
the average accuracy up to over 98 % with the drawback of a
higher runtime of 1.2 ms. These results show that our approach
is convenient for a quick and precise machine state detection
even at safety-critical processes.

VI. OUTLOOK

We use a Random Forest in a one vs. all fashion. It is also
possible to directly use Decision Trees that are able to perform
a multi-class classification. This might enhance prediction
speed because less trees are necessary. Our approach of using
a Random Forest in a one vs. all fashion might be used to
identify critical machine states. If each forest declines the state
it was trained for, commanding an emergency shutdown should
be possible. However, this scenario was not tested in order
not to damage the experimental setup. Thus, this aspect has
to be investigated in further examinations. Another interesting
approach would be this Random Forest method in combination
with the Isolation Forest algorithm. An Isolation Forest is a
modification of the Random Forest algorithm for anomaly
detection [23]. The combination of these methods might be
used to identify critical states in a reliable manner.
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