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Abstract—The advance of technology for transmitting Data-
over-Sound in various IoT and telecommunication applications
has led to the concept of machine-to-machine over-the-air acous-
tic signalling. Reverberation can have a detrimental effect on such
machine-to-machine signals while decoding. Various methods
have been studied to combat the effects of reverberation in
speech and audio signals, but it is not clear how well they
generalise to other sound types. We look at extending these
models to facilitate machine-to-machine acoustic signalling. This
research investigates dereverberation techniques to shortlist a
single-channel reverberation suppression method through a pilot
test. In order to apply the chosen dereverberation method
a novel method of estimating acoustic parameters governing
reverberation is proposed. The performance of the final algorithm
is evaluated on quality metrics as well as the performance of a
real machine-to-machine decoder. We demonstrate a dramatic
reduction in error rate for both audible and ultrasonic signals.

I. INTRODUCTION

Digital signal processing (DSP) techniques have led to
systems that allow us to use an audio signal as a medium
to transfer data among devices. There is a continuous growing
demand for transmitting Data-over-Sound for various IoT
and telecommunication applications [1][2][3][4][5]. Signals
radiated across a room are often corrupted by reverberation.
Reverberation is the the dominant acoustic characteristic of
a space. The effect of reverberation depends on the physical
structure of the room and the objects present in it. At the
listener’s end, along with the clean signal the superpositions
of many delayed and attenuated copies of the clean signal
are heard due to multiple reflections from the surroundings.
These corruptions degrade the intelligibility of the audio
signal. Multiple studies have been carried out on the effect
of reverberation on speech signals for applications such as
Automatic Speech Recognition [6][7][8]. There exists a wide
range of non-speech digital audio signals being used as a carrier
medium, for which it is desirable to remove these reverberant
parts to enhance the detection [9]. However, machine-machine
(M2M) signals can be very different from speech, and the
decoding requirements are also quite different. It is therefore
important to investigate DSP techniques to suppress the
distortions caused by an acoustic environment on such data
carrying machine-to-machine acoustic signals. In this research,
we extend the work done on existing speech dereverberation
models to machine-to-machine acoustic signals.

II. MACHINE-TO-MACHINE SIGNALS

For the purpose of this research we focus on an M2M
audio codec developed by Chirp, a London based Data-over-
Sound communication company. Chirp (not to be confused
with the conventional signal processing term: chirp (sweep)
tone) enables devices to share data among them via sound.
The transfer of data is done via a dynamically generated
monophonic/polyphonic audio signal referred to as a packet.
Frequency-shift-keying (FSK), a popular DSP modulation
technique, is used to encode the data. The encoded data can
then be broadcast by a speaker and received by a microphone.
The decoding of the packet is done via demodulation. A Chirp
signal (comprised of packets) is designed to be robust over
distances of several metres, in noisy, everyday environments.
A single packet comprises of preamble tones, a payload length

Fig. 1. Spectrogram of an anechoic Chirp signal.

tone, the payload tones and error correction tones. Figure 1
shows the spectrogram of a Chirp packet with labels indicating
these components. The sequence of frequencies corresponding
to each category is dynamically determined by the data being
transmitted. The preamble tones are fixed for all the packets
utilising a particular Chirp protocol. The audible protocol
generates a Chirp signal within the 1.7kHz to 10.5kHz band
and the inaudible protocol utilises the ultrasonic frequency
band (18-20 kHz). Each symbol byte of data is then converted
into a monophonic tone with a mapped frequency using FSK.
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Fig. 2. Spectrogram of a reverberant Chirp signal.

Chirp packets employ Reed-Solomon (RS) error correction
algorithm. The RS encoder takes in the payload as input and
adds extra redundant bits. The decoder processes the body
(payload + RS codes) and attempts to correct the errors and
erasures and recover the original data.

There are many degradations along the signal path that impair
the ability of the decoder to decipher the transmission. These
include background noise, distortions, reverberation etc. The
effect of reverberation on a Chirp signal is to cause it to sound
distant and spectrally modified. This reduces the intelligibility
of a Chirp signal [10]. Figure 2 is a spectrogram illustrating the
change in the Chirp signal when convolved with the impulse
response of a room impulse response (RIR) having RT60 of 1.2
seconds. Looking at the spectrogram, we notice the presence
of reverberation tails for each note. It is evident that the energy
decay of preceding tones interferes with the subsequent one,
leading to a strong risk of mis-detections. Hence there is a
need for a dereverberation algorithm that functions across many
different environments.

III. PROPOSED DEREVERBERATION ALGORITHM

The target applications for the proposed algorithm are
often single-channel audio, which means existing popular
multichannel dereverberation techniques cannot be used. Also,
as we do not have any prior knowledge of the RIR we cannot
perform reverberation cancellation. Hence, we focus on the
dereverberation techniques that suppress the late reflections.
A popular single channel reverberation suppression algorithm
is spectral subtraction [11]. Figure 3 shows an overview of
the spectral subtraction algorithm. The main goal of this
dereverberation method is to find an appropriate gain function.
The gain function is tuned to minimise the error between
the source signal and the reverberant signal. This is done by
estimating the power spectral densities (PSD) of the reverberant
signal.

In general, there are 3 main stages of the algorithm. The
first estimates the RT of the reverberated Chirp signal, the
second stage computes the reverberant PSD. This is used
to obtain the real valued gain function G(k,l). In the last
stage, the gain is multiplied with the reverberant input to

Fig. 3. Schematic overview of the algorithm.

obtain the dereverberated output short-time spectrum C(k,l).
An inverse short-time Fourier transformation synthesises the
dereverberated signal.

A. Joint estimation of EDC and RT60

Polack models the RIR statistically as an exponentially decay-
ing white Gaussian noise which is based on the reverberation
time RT60 [12]. The energy decay of the RIR is given by (1).

EDC(t) =

∫ ∞
τ=t

h2(τ)dτ (1)

Since the parameters of this model are frequency indepen-
dent, we can extend this model of (1) into STFT discrete time
and assume that the decaying model is valid in each frequency
bin. For frequency bin k this results in

EDCk(t) =

∫ T

τ=t

h2
k(τ)dτ (2)

Where h2
k(t) is the energy envelope of frequency bin k.

Figure 4 shows the log-energy envelope of a subband of a
reverberant Chirp signal obtained through STFT. It is observed
that after the initial burst of energy (corresponding to the Chirp
tone) the energy decays in correlation with its RIR.

A peak picking algorithm is used to obtain the time of the
energy peak of the subband. The peak corresponds to the attack
portion of the Chirp tone envelope. The start of the EDC is
offset from the peak by a constant value as an estimated time
of the end of the Chirp tone. Most subbands decay to the
noise floor and limit the dynamic range to less than 60 dB.
To account for this, the decay rate is estimated by a linear
least-squares regression of the measured decay curve from a
level 5 dB below the initial level to 35 dB. The linear least-
square regression is performed over the cumulative sum of the
normalised energy envelope values corresponding to -5 dB and
-35 dB. Figure 4 also shows the fit of the regression over the
log-energy envelope of the subband. The value of RT60,k is
obtained by the x-intercept corresponding to 60 dB.

Subbands are thresholded before processing to ignore bands
which do not contain any meaningful information. The overall
RT60 is calculated by averaging the nonzero RT60,k estimates

RT60 =
K∑
k=1

RT60,k

K
∀RT60,k 6= 0 (3)
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Fig. 4. Least-squares regression fit over the log-energy decay.

B. Estimating the Reverberation PSD

A component view of the ’Estimate of Reverberation PSD
block’ (from Figure 3) is shown in Figure 5. The reverberant
portion of the source signal is estimated from the previous
frames using the short-term power spectrum of reverberated
source. Due to the convolution of the RIR with the Chirp signal,
the reverberant Chirp signal exhibit the exponential decaying
envelope found in the RIR. The Chirp signals are stationary
over periods of time that are short compared to the RT60. If Tc
be the period where the Chirp signal is stationary. The short-
term power spectral densities are given as the auto-correlation
at time l by

γxx(k, l) = γxrxr (k, l) + γxdxd
(k, l) (4)

Fig. 5. Schematic overview of the Reverberation PSD Estimation.

where xd(t) and xr(t) are the result from the convolution of
the Chirp signal c(t) with the early (direct) part hd(t) and late
reflection part hr(t) of the RIR. The short-term PSD of the
late reverberant signal from (4) is estimated using a delayed
and attenuated version of the short-term PSD.

γxrxr
(k, l) = e−2∆T γxx(k, l − T ) (5)

where, Tc ≤ T � RT60

For our scenario, 80ms was found to be the best resulting
value of T and the reverberation estimate starts at frame l− T .
This estimated reverberation PSD is then subtracted from the
reverberated Chirp signal to suppress the reverb tail.

|C(k, l)| = X(k, l)− γxrxr
1
2 (k, l) (6)

C. Spectral Gain Function

A common feature of the spectral subtraction technique is
that the reverberation suppression process given in (6) can
be estimated to be a short-time spectral attenuation factor. In
this last block, a real valued spectral attenuation (gain) factor
G(k, l) is calculated to suppress the reverberant portions of
the Chirp signal X(k, l).

|C(k, l)| = |X(k, l)|G(k, l) (7)

The short-term spectral attenuation factor according to [11]
is given by

G(k, l) = 1− 1√
SNRpost(k, l)

(8)

Where, SNRpost(k, l) is the A-posteriori Signal to Noise Ratio
which is calculated by

SNRpost(k, l) =
|X(k, l)|2

γxrxr
(k, l)

(9)

This fails for scenarios where the estimated reverberant noise
amplitude is greater than the instantaneous amplitude of the
reverberant Chirp spectrum |X(k, l)|. Such scenarios lead to a
negative estimate for the amplitude of the clean Chirp spectrum
|C(k, l)|. For these bins, a half-wave rectification is performed
and the gain function G(k, l) is set to 0. This rectification
however leads to a residual noise problem, which is alleviated
by performing the following modifications.

1) Averaging the instantaneous SNR during the calculation
of the gain.: The instantaneous SNR is defined by

SNRinst(k, l) = SNRpost(k, l)− 1 (10)

The averaged SNR is an estimate of the a priori SNR which
is calculated using a moving average of SNRinst. This reduces
the random variations introduced by late reverberation.

SNRprio(k, l) = βSNRprio(k, l − 1)

+(1− β)H(SNRinst(k, l))
(11)

Where H() denotes the half-wave rectification and β is set
to 0.9.

2) Modifying the half-wave rectification to lead to a non-zero
threshold rather than nullifying it.:

G(k, l) =

{
1− 1√

SNRpost(k,l)
, if |C(k, l)| ≥ λ|X(k, l)|.

λ, otherwise.
(12)

Where λ is chosen as 0.1.

IV. EVALUATION

A. Evaluation of RT Estimation

The RT60 estimation algorithm was tested on audible
Chirp signals convolved with the 590 RIRs from AcouSP
Database[13]. These consisted of RIRs with RT60 ranging
from 0.4s to 16s. Figure 6 shows a graph of the known RT60

versus the estimated RT60 values obtained using this approach.
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We find overall that the estimates have a mean error of 0.34s
and a mean absolute error of 0.38s.

For real-world scenarios (RT < 2s) the mean error is 0.11s
and mean absolute error is 0.19s. We use this estimate of RT in
the first block of the spectral subtraction based dereverberation
method.

Fig. 6. Actual vs estimated reverberation time.

B. Evaluation of Dereverberation Algorithm
1) Log Spectral Distortion: To evaluate the efficiency of the

algorithm, the log spectral distortion (LSD) also known as log
spectral distance, has been one of the most straightforward and
longstanding speech distortion measures [10]. LSD is the root
mean square (RMS) of the difference of the log spectra of the
original clean Chirp signal c(n) and the signal x(n) which is
the output of the dereveberation model. The LSD is calculated
for each time frame on the STFT signals C(k, l) and X(k, l)
with l denoting the time frame and k denoting the frequency.
The LSD is given by

LSD(l) = (
2

K

K
2 −1∑
k=0

|Γ{X(k, l)} − Γ{S(k, l)}|2)
1
2 dB (13)

where Γ{X(k, l)} = max{20log10(|X(k, l|), δ} is the
log spectrum confined to 50 dB dynamic range, and δ =
maxl,k20log10(|X(k, l|)−50 and likewise for Γ{S(k, l)} [11].
The mean LSD is obtained by averaging (13) over all the frames
containing Chirps.

2) Reverberation Reduction: Reverberation reduction (RR)
is another metric that is used to evaluate the quality of the
reverberation model [11]. RR is the ratio of the sum of the log
power on subbands without Chirp tones between the reverberant
Chirp signal cr(n) and the resulting Chirp signal output from
the dereverberation model x(n). The RR is calculated for each
subband on the STFT signals Cr(k, l) and X(k, l) with l
denoting the time frame and k denoting the frequency band.
The RR is given by

RR(k) = 10log10(

∑
t=silence |Cr(k, l)|2∑
t=silence |X(k, l)|2

) dB (14)

The mean RR is obtained by averaging (14) over all the
subbands. The subbands with silence were determined by
thresholding.

3) Evaluation based on the Chirp Decoder: One hundred
audible and another 100 inaudible (ultrasonic) Chirp signals
with random packets are generated using the Chirp python
SDK. Each of these Chirp signals are convolved with the 590
RIRs from AcouSP database [13], resulting in 59000 audible
and 59000 inaudible (ultrasonic) Chirp signals. The 118000
reverberant Chirp signals are decoded to obtain the base decoder
performance. Next the spectral subtraction algorithm with the
parameter estimation implemented in Matlab is applied on the
118000 Chirp signals. The 118000 dereverbed Chirp signals
are then passed to the Chirp python SDK to decode.

4) Comparison with popular Single Channel Reverberation
Suppression Algorithms: Two Chirp signals (1 audible and
1 inaudible) with a single packet were each convolved with
the 590 RIRs, yielding 1180 (590 audible and 590 inaudible)
reverberant Chirp signals. Due to constraints in computational
complexity Spectral subtraction, LP residual cepstrum and the
Source Enhancement algorithms (available as spendred.m in the
Matlab Voicebox Toolbox) were chosen for comparison. Each
of the dereverberation methods were programmed on Matlab
and applied on these reverberant Chirp signals, the resulting
waveforms were then decoded using the Chirp decoder.

V. RESULTS

1) Technical Quality Metrics: An STFT with a 46ms Hann
window with 93.75% overlap is used for calculating LSD and
RR. 59000 audible Chirp signals (100 for each IR) are used
for the evaluation tests. The mean log spectral distances of
the reverberant Chirp signals and the dereverbed Chirp signals
from the anechoic Chirp signals averaged over each RIR are
shown in Figure 7. It is found that for each RIR, the dereverbed

Fig. 7. Mean log spectral distance.

Chirp (shown in red) has a lower LSD than its reverberant
counterpart (shown in blue). This signifies that the Chirp signal
after dereverberation is closer to the raw Chirp signal than
its reverberant counterpart. Figure 8 shows the reverberation
reduction in dB for the 590 RIRs between the reverberant
Chirp signals and the dereverbed output. A positive correlation
is noticed between the RR and the RT60. As the RIRs with
increasing RT60 values have more reverberant parts, an increase
in the reverberation portion is noticed.

2) Evaluation based on the Chirp Decoder: Table I shows
the overall results of the dereverberation algorithm. The
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Fig. 8. Reverberation Reduction for RIRs with increasing RT.

dereverberation method results in a 25 percentage points
increase in the decode rate of audible Chirp signals and 6
percentage points increase in inaudible Chirp signals. In the
audible results, it is found that for low RT60(<0.6s) there is a
short decrease in the decode rate and an increase in the decode
rate for other RT60values. For inaudible results, the percentage
point increase in result is quite small as the decode rates are
significantly high over all. This is expected as the effect of
reverberation in the ultrasonic frequency range is comparably
less as to that of the audible spectrum [9].

3) Comparison with popular Single Channel Reverberation
Suppression Algorithms: Table II shows the performance of the
dereverberation algorithms for the audible and inaudible Chirp
signals. It was found that our proposed spectral subtraction
gave by far the best result, and also the fastest processing time.

Chirp Signal Decode Rate (%)
Before After

Audible 54.53 79.78
Inaudible (Ultrasonic) 86.15 92.11

TABLE I
DECODE RATE OF CHIRP SIGNALS

Algorithm Decode Rate (%) Average
Processing
Time (s)Audible Inaudible

(Ultrasonic)
LP Residual

Cepstrum 42.54 82.03 3.20

Source
Enhancement 44.24 81.86 17.81

Spectral
Subtraction 77.79 87.79 1.76

TABLE II
COMPARISON OF DEREVERBERATION ALGORITHMS

VI. CONCLUSIONS

Similar to speech and other digital signals, reverberation is
shown to degrade the intelligibility of the source sounds for
decoding of M2M signals. The main goal of this project was to
investigate and propose a dereverberation model with suitable
parameter estimation to suppress such unwanted influences and
therefore increase the decode rate of M2M signals. A pilot
study was performed to validate the accurateness of simulating

an environment and it is found to be a viable option to test
the performance of M2M signals. Since Chirp signals fall
in the single channel signal, the single channel reverberation
suppression techniques were found to be best suited. Spectral
subtraction with a novel parameter estimation algorithm is
found to be the best dereverberation method for M2M signals.
Reverberation parameters required for the dereverberation
method are estimated by extending the energy decay algorithm.
The evaluation of the model shows that the estimates of the
reverberation parameters have a mean error of ±0.11s for the
common real-world environments (RT60 < 2s). The overall
result of the algorithm combining reverberation estimation
model and spectral subtraction show good dereverberation
while preserving the packet data. The improvement in decode
rate is found to be 25 percentage points for audible and 6
percentage points for inaudible Chirp signals.
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