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Abstract—Estimating the quality of speech without the use of
a clean reference signal is a challenging problem, in part due to
the time and expense required to collect sufficient training data
for modern machine learning algorithms. We present a novel,
non-intrusive estimator that exploits recurrent neural network
architectures to predict the intrusive POLQA score of a speech
signal in a short time context. The predictor is based on a novel
compressed representation of modulation domain features, used
in conjunction with static MFCC features. We show that the
proposed method can reliably predict POLQA with a 300 ms
context, achieving a mean absolute error of 0.21 on unseen data.
The proposed method is trained using English speech and is
shown to generalize well across unseen languages. The neural
network also jointly estimates the mean voice activity detection
(VAD) with an F1 accuracy score of 0.9, removing the need for
an external VAD.

Index Terms—speech quality estimation, POLQA estimation,
deep neural networks.

I. INTRODUCTION

In recent years, speech quality assessment has gained in-
creasing importance in multi-media and telecommunication
applications, as well as performance evaluation of speech
coders [1], text-to-speech synthesis [2] and automatic speech
recognition (ASR) [3]. Speech quality can be defined as the
subjective opinion of a given speech signal, as determined by
the listener [4]. This definition highlights the subjective nature
of this measure. Factors contributing to degradation of speech
quality include additive noise, reverberation due to convolution
with a Room Impulse Response (RIR) [5], coding artefacts,
clipping and transmission errors.

Traditionally, extensive listening tests are required for
speech quality assessment. Such tests are expensive and time
intensive procedures [6]. The ability, therefore, to be able to
carry out speech quality assessment in an objective manner
without the need for subjective testing is of great interest. The
quality of a speech signal can be estimated objectively using
either intrusive or non-intrusive methods. The more common
approach uses intrusive methods which rely on both the clean
and degraded signal to calculate the speech quality. The
previous ITU-T recommendation was Perceptual Evaluation
of Speech Quality (PESQ) [7]. However, this has now been
superseded by the Perceptual Objective Listening Quality
Analysis (POLQA) [8] model. These models both work by
aligning the clean and degraded signals before performing

an auditory transform. The dissimilarity between the clean
and degraded signals is then evaluated before being mapped
onto the subjective mean opinion score (MOS) [9] scale. The
disadvantage of intrusive methods is that a clean reference
signal is required whereas, in practice, the clean signal is
typically unavailable [10].

Non-intrusive methods work without the need for a clean
reference signal, and the current ITU-T industry-standard
recommendation for non-intrusive speech quality assessment
is P.563, which was designed for narrow-band telephony
applications [11]. This standard uses a number of features from
the degraded speech to estimate the quality score directly on
the MOS scale. A number of data-driven methods currently
exist that extract features from the speech signal and use a
previously trained model to map the features to a quality score.
Dubey et al. [12] train a Gaussian Mixture Model. The work in
[13], [14] deploys a classification and regressions tree (CART)
based model using short-term features characterized by their
statistics along with long-term spectral deviation features
over an entire utterance. More recent methods rely on deep
learning [15] [16] [17]. Results demonstrate that a mapping
function can be learnt effectively for the task of speech quality
assessment. Yang et al. [18] have also shown that a deep neural
network (DNN) is capable of predicting POLQA scores using
real-time control protocol (RTCP) features.

This paper proposes training a recurrent neural network
(RNN) on a large training data set to estimate the POLQA
score non–intrusively, on a short-time basis, using speech fea-
tures. To the best of our knowledge, this is a first non-intrusive
POLQA estimator that predicts POLQA on a short-time basis.
Unlike previous work [18] that requires RTCP features, our
method works with speech features extracted from the decoded
speech signals, that is, without the need for the transmission
packet information. Another novel contribution of this work
is the joint estimation of voice activity and POLQA using a
multi-task RNN.

The remainder of the paper is organised as follows. In
Section II we present the proposed algorithm and the baseline
method from [13], followed by a description of the data sets
and evaluation metrics in Section III. We finish with results in
Section IV and conclusions in Section V.
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Fig. 1. Overview of the procedure for computing the modulation spectrogram
representation of a speech signal.

II. METHODS

A. Baseline

As a baseline for this paper and given that there are no
other recent comparable approaches, we consider our previous
work on non-intrusive PESQ estimation [13]. There we used
a CART regression tree and a set of 112 features to model the
PESQ score of an utterance of speech. In this paper, we re-
train this baseline method for the task of non-intrusive POLQA
prediction, on the same training data as our proposed method
and refer to it as QOS.

B. MFCC Features

The Mel-Frequency Cepstral Coefficients (MFCC) are a
common feature set for a number of speech processing appli-
cations, including ASR [19]. In our method, we use a sample
rate of fs = 8 kHz with a pre-emphasis factor of 0.97 and
extract 24 MFCC features every 10 ms using a 25 ms anal-
ysis window. These are appended to 24-dimensional MDCC
features described and defined in the following subsection.

C. MDCC Features

Here we describe the modulation domain feature set used in
our algorithm (denoted as MDCC). There is much interest in
amplitude modulation domain processing of speech because
low-frequency modulations of speech are the fundamental
carrier of linguistic information. This representation has been
exploited in areas such as speech coding [20], recognition
[21], [22], enhancement [23], [24] and speech intelligibility
modelling [25], [26]. This approach is also motivated by stud-
ies of the human auditory system [27] that point to analyses
and separation of different acoustic objects in this domain. A
number of modulation domain methods have been proposed
in the fields of emotion detection [28] and speech quality
estimation [29], [30]. In the field of speech and acoustics,
there are a number of definitions of the amplitude modulation

spectrum that differ in the sub band decomposition. The pro-
cedure we use to define the modulation domain representation
of the signal is shown in Fig. 1. The first transform in the
figure is applied to the time-domain signal to decompose it
into sub band signals (using linear frequency spacing). The
temporal envelope within each band is then computed. Without
loss of generality, we will use Fourier transform to mean
a Discrete Fourier transform and compute it using the Fast
Fourier Transform (FFT) algorithm in the following. Denoting
the length N time domain signal as s(n), its short-time Fourier
transform (STFT) is calculated as

Sk(m) =
N∑

n=0

s(n)wa(n−mL)e−j 2π
N k, (1)

where m is the short-time frame (typically 30 ms duration),
which in the context of modulation domain processing is
defined as an ‘acoustic frame’ [20], wa(n) is the window
applied on each frame and L is the acoustic frame increment
in samples. After the first STFT, the temporal envelope of
each acoustic frequency band k (also called the modulating
signal) is obtained as the magnitude of the transformed signal,
|S(m, k)|. If the increment of the acoustic frame is t = 1/fs s
then the sampling frequency of the modulating signal is
1/t Hz. Since the highest amplitude modulation frequency
for the human auditory system is 256 Hz for the cochlear
nucleus [31], t = 4ms could be chosen. To obtain the
modulation spectrum, a window function wm(n) is used to
segment the amplitude envelope of each frequency bin and a
second STFT is performed on each modulation frame, as

Sl(k, h) =
M∑

m=0

|Sk(m)|wm(m− lL)e−j 2π
H h, (2)

where H is the number of modulation frequency bins and m is
the modulation frame index. Because the features are extracted
independently for each modulation frame, in the following
description we omit the index of the modulation frame, l,
for clarity. The modulation spectrogram is thus given by
P (k, h) = |S(k, h)|2. An example of the modulation spectrum
for one frame of a speech utterance is shown in Fig. 2 (top). In
order to compress the information in the modulation spectrum,
we propose a novel final step. We apply a two dimensional
DCT-II (2D-DCT) on the modulation spectrogram P (k, h) to
produce a set of DCT coefficients D as follows.

D(Ω,Φ) =
K−1∑
k=0

H−1∑
h=0

WP (k, h)C(k, h,Ω,Φ),

where C(π, k, h,Φ) = cos
[
π
K

(
k + 1

2

)
Ω
]

cos
[
π
H

(
h+ 1

2

)
Φ
]

and W =
√
(1/K)

√
(1/H) for Ω = 0, ...,K − 1 and

Φ = 0, ..., H − 1. An example compressed spectrum is
shown in Fig. 2 (bottom). From empirical experiments, it was
found that only a few coefficients from the upper triangle of
D(Ω,Φ) are sufficient in capturing most of the variation in the
modulation spectrum. 24 MDCC coefficients are the following
set, [D(1, 1 : 21), D(2, 1 : 3)].
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Fig. 2. Modulation spectrum (top) of a 128 ms modulation frame of speech
from [32]. An example of the modulation spectrum after applying the 2D-DCT
(bottom).

D. Recurrent Neural Network Model

The 24 MFCC and 24 MDCC features are standardized
(zero mean and unit standard deviation) before being used
to train an RNN that jointly estimates VAD and POLQA as
depicted in Fig. 3. The context length is a parameter that can be
varied from 10 ms up to the maximum length of an utterance
in the data and represents the context available as input to the
multi-task RNN. For this paper we experimented with lengths
from 100 ms (10 frames) to 1.2 s (120 frames). It will be
shown in the results section that the proposed method can
accurately estimate the POLQA scores and the VAD scores
with a context greater than or equal to 30 frames. The RNN
for this context size has an input layer of size 48×30 followed
by three layers of long short term memory (LSTM) cells [33]
in a 40 × 21 × 16 topology (for each time step). In the last
hidden layer, the activations are averaged over a window of
10 frames, which is then followed by an output layer with
two nodes. One of the output nodes estimates the POLQA
score and the second node estimates the Mean Voice activity
Posterior (MVP). The MVP is obtained by running a simple

Input layer with MFCC +
MDCC + MVP features

Hidden Layers + Dropout Layer

Activations from
last hidden layer are
averaged over 10 steps

POLQAMVP

Fig. 3. Multi-task RNN topology used for the joint estimation of the mean
voice posterior (MVP) and POLQA scores.

VAD from [34] on the clean speech used in the synthesis of
the training data (described in more detail in Section III). The
VAD outputs a posterior probability of the frame being voiced
and these scores are averaged over the context window used for
the RNN model, resulting in a mean voice activity posterior,
which becomes the target of the second output of the RNN
model. During test time, the MVP can be used as a confidence
measure and used to prune the POLQA scores, accordingly
when the MVP is lower than a threshold, we ignore the
POLQA score on the grounds that there isn’t enough speech
in the context window to reliably estimate POLQA. In our
experiments, we found a threshold of 0.5 to be a good choice.
This parameter is not tuned. The multi-task RNN is trained for
10 epochs on the training data using a mini-batch size of 1000
observations with an Root Mean Square (RMSE) error metric
(RMSEPOLQA+RMSEMV P ). The Adam [35] optimiser is
used with an initial learning rate of 0.001. In order to avoid
over-fitting the model parameters, dropout is applied before
the last hidden layer of the RNN. In this paper, none of the
RNN hyper-parameters were tuned for this particular problem
or data and one can expect further gains in performance from
doing such tuning.

III. DATA AND METRICS

A. Training Data

The training data for the proposed and baseline methods is
based on the clean 100 hrs training partition of the Librispeech
corpus [36], which is derived from audiobooks read by a
large number of speakers. This forms the base material for
the training data set. The base material is artificially corrupted
by RIR convolutions (measured and artificially generated) and
additive noise. This noisy and reverberant set forms a block
of data, with each block sampling the available noise and RIR
using uniform sampling. In each block, 128 RIR are sampled
with a T60 in the range [0.1—1.25 s] and C50 [37] in the range
[0—30 dB]. Also, 100 noise realizations including babble,
household, ambient, street and vehicle are included with SNR
in the range [0—30 dB]. Care is taken to ensure that street
and vehicle noise types are not applied to speech that has
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an RIR convolution applied. Each block is then processed by
10 CODEC conditions, covering the following: G.711 a-law,
GSM-FR, G.729 [A and B], GSM-AMR [4.75, 6.70, 7.40 and
12.2 kbps] and linear PCM. The resulting training set contains
nearly 100 hrs of processed data. All signals are down-sampled
to 8 kHz and filtered appropriately to represent narrowband
telephony data.

B. Test Data

The test data follows the same processing procedure as
described in the preceding subsection on training data but with
a different set of speech base material, RIR and noise sources,
ensuring no overlap between the training and test data sets in
terms of speaker, noise or reverberation. In order to better
understand the generalization performance of the proposed
method, we created test sets in three different languages—
English, French and Japanese. For English, we created two
sets of base material, the first is the test-clean partition of
Librispeech [36] and the second is the clean English partition
of the P.23 [38] database. We also used clean French and
Japanese speech material from the P.23 [38] database. These
test sets were processed similarly to the training data, with
each block constructed with a smaller set of 32 RIR and 36
noise sources. The same 10 CODEC conditions were applied,
resulting in approximately 15 hrs of test data per set.

C. Evaluation Metrics

In the following, Pe and Pt are the estimated and true
POLQA scores, respectively and the error in estimating a
sample is defined as E(n) = P (n)e − P (n)t.

Metric Description

Pearson Correlation
Coefficient (R)

Measures the dependence between Pe and
Pt and takes a value in the range [-1,1].

Root Mean Square
Error (RMSE) RMSE =

√∑N
n=1

1
n
E(n)2

Mean Absolute
Difference (MAD)

MAD =
∑N

n=1
1
n
|E(n)|

F1 Score (F1) Measures the accuracy of the MVP
estimation (which becomes a classification
task when an appropriate threshold is
applied on a segment) and is defined as

F1 =
2TP

2TP + FP + FN
,

where TP is the true positive rate, FP
and FN are the false positive and negative
rate respectively.

IV. RESULTS

A summary of the mean performance of the proposed
method on all the test sets for different context lengths is
presented in Fig. 4. It can be observed that the proposed
method outperforms the baseline QOS method for all context
lengths evaluated (from 100 ms to 1.2 s). The average RMSE
across all test sets is 0.29 for the proposed method for a 300 ms
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Fig. 4. POLQA prediction RMSE (averaged over all test sets) using the
proposed method (middle line), the baseline QOS method (top line) and the
proposed method with oracle VAD used for testing (bottom line).

TABLE I
DETAILED RESULTS FOR POLQA ESTIMATED USING A 300 MS TEMPORAL

WINDOW AND SEGMENT PRUNING BASED ON THE ESTIMATED VAD
POSTERIORS FOR THE DIFFERENT TEST SETS, USING ONLY THE MFCC

FEATURES.

MAD RMSE R VAD F1
Libre 0.35 0.54 0.70 0.86
P23-EN 0.28 0.43 0.67 0.91
P23-FR 0.22 0.31 0.69 0.89
P23-JP 0.24 0.38 0.70 0.89
Mean 0.27 0.42 0.69 0.89

TABLE II
DETAILED RESULTS FOR POLQA ESTIMATED USING A 300 MS TEMPORAL

WINDOW AND SEGMENT PRUNING BASED ON THE ESTIMATED VAD
POSTERIORS FOR THE DIFFERENT TEST SETS.

MAD RMSE R VAD F1
Libre 0.26 0.37 0.86 0.89
P23-EN 0.20 0.28 0.84 0.93
P23-FR 0.19 0.26 0.78 0.89
P23-JP 0.18 0.25 0.84 0.91
Mean 0.21 0.29 0.83 0.90

context window and this represents a 38.3% relative reduction
in error over the baseline. Even with a context of just 100 ms,
our method has an RMSE of 0.38, that is 19.1% relative lower
than QOS. Also it can be seen that the performance is very
close to the performance obtained when using an oracle VAD
during testing. Here the RMSE across all test sets with ground
truth VAD is 0.26 for a 300 ms window and the proposed
estimate is only 11.5% worse. The addition of the proposed
MDCC features helps reduce the RMSE by nearly 31% relative
to the MFCC only based system (see Tables I and II). Another
important question is the ability of the proposed method to
generalize to unseen languages. As described in Section II,
the proposed method is trained on English speech material.
Table II presents the detailed results for POLQA and MVP
estimation for a 30 frame context for the different test sets
using the full feature set. It can be seen that the performance
is consistent across English, French and Japanese languages,
both in terms of POLQA and VAD estimation.

V. CONCLUSIONS

We presented a short-time, non-intrusive POLQA estimator
of speech quality by exploiting a recurrent neural network and
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jointly training it for voice activity estimation. The proposed
method uses narrowband MFCC features in combination with
features extracted from a novel compressed representation of
the modulation spectrum, that help reduce the RMSE of the
system by 31.0% relative to the MFCC only system. The use
of an RNN topology with these features allows the proposed
method to reliably estimate POLQA and VAD with 300 ms
of context. The average RMSE across 4 test sets is 0.29
for POLQA and the VAD’s F1 accuracy is 0.90. We show
that the proposed method is able to generalize well across
unseen languages and that the VAD performance is similar
to the ground truth. The results demonstrate that in terms of
relative RMSE, with a 300 ms context, the proposed method
outperforms the baseline method by 38.3%.
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