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Abstract—The FISTA (fast iterative shrinkage-thresholding algorithm)
is a well-known and fast (theoretical O(k−2) rate of convergence)
procedure for solving optimization problems composed by the sum of
two convex functions, such that one is smooth (differentiable) and the
other is possible nonsmooth.

FISTA can be understood as a first order method with one important
aspect: it uses a suitable extragradient rule, i.e.: the gradient is evaluated
at a linear combination of the past two iterates, whose weights, are usually
referred to as the inertial sequence. While problem dependent, it has a
direct impact on the FISTA’s practical computational performance.

In this paper we propose a novel inertial sequence; when compared to
well-established alternative choices, in the context of convolutional sparse
coding and Wavelet-based inpainting, our proposed inertial sequence
can reduce the number of FISTA’s global iterations (and thus overall
computational time) by 30% ∼ 50% to attain the same level of reduction
in the cost functional.

Index Terms—FISTA, inertial sequence, proximal gradient method,
convolutional sparse coding, Wavelet-based inpainting.

I. INTRODUCTION

FISTA [1] is part of the family of accelerated methods (see [2,
Section 5.2]), with theoretical O(k−2) rate of convergence1, and it
targets the minimization of the composite function F (u) = f(u) +
g(u), where f, g : RN 7→ R are both convex, f(·) is continuously
differentiable with L-Lipschitz continuous gradient, and, while g(·)
may be nonsmooth, its proximal operator,

prox
g

(y) = arg min
u

1

2
‖u− y‖+ g(u), (1)

has a computationally simple or affordable solution.
FISTA is a very popular choice among several others2 to minimize

the composite function F (u), especially when g(u) = λ · ‖u‖1, and,
in general, it generates the iterates

u(k) = prox
g

(y(k) − αk∇f(y(k))) (2)

y(k+1) = u(k) + γk(u(k) − u(k−1)) (3)

for k ≥ 1, where αk ≤ 1
L

and γk, the inertial sequence, satisfies

γk =
tk − 1

tk+1
, t2k − tk ≤ t2k−1 ∀k ≥ 2. (4a,4b)

Popular choices for the inertial sequence {γk}, considering t1 = 1,
can be generated using (4)3: Originally, [1] proposed to use (5a)4,
while more recently, among others, [10], [11], [3] used (5b) for
several values of b ≥ 2 (being b = 2 common practice).

1Recently, [3] has proved that FISTA’s rate of convergence is o(k−2).
2E.g. Douglas-Rachford splitting [4], forward-backward splitting [5],

ADMM [6], etc.
3Other recent alternatives such as [7], [8], include ad-hoc rules or many

more parameters than (6), are not listed due to their additional complexity.
4same as Nesterov’s acceleration scheme [9].

tk =
1 +

√
1 + 4 ∗ t2k−1

2
, tk =

k − 1 + b

b
, b ≥ 2.

(5a,5b)

Moreover, in [10] the inertial sequences generated by (5a) and
(5b), which yields γk = k−1

k−1+(b+1)
, were assessed for different

tasks (Wavelet-based inpainting and deblurring, TV denoising) with
b = {2, 3, 4}; it concluded that the best sequence is problem
dependent. Similarly, [11] assessed5 (5b), also with b = {2, 3, 4}, for
basis pursuit denoising [12] (and variants) and the logistic regression
and its `1 variant; for those experiments, (5b) with b = 4 gave the
best performance. On the other hand, [3]6 focused on a theoretical
analysis of inertial sequences generated by (5b), and proved that it
gives FISTA a rate of convergence of o(k−2) rather than O(k−2).

In this paper we propose a novel inertial sequence, which can be
generated by considering t1 = 1, and (6a), leading to (6b) for k ≥ 2.

tk =
k − 1 + a

b
, b ≥ 2, a ≥ b−1; γk =

k − (1 + b) + a

k + a
. (6a,6b)

While in Section III we give a theoretical analysis of (6a), where
we prove that FISTA along with (6b) indeed converges to the
minimum of F (·) with a speed of, at least, O(k−2), along with
comments about its relationship to (5b)7, here we highlight that a is
a free parameter in (6a) and that it offers a great deal of flexibility,
when compared to either (5a) or (5b), for selecting the actual inertial
sequence. Furthermore, our simulations (see Section IV), which focus
on the Wavelet-based inpainting and convolutional sparse coding
(CSC) [13] problems, also offer additional computational evidence
that FISTA along with (6b) delivers better performance than either
(5a) or (5b); namely our proposed inertial sequence (i) can reduce the
number of FISTA’s global iterations (and thus overall computational
time) by 30% ∼ 50% to attain the same level of reduction in the
cost functional and (ii) the rate of reconstruction quality (w.r.t. global
iterations) is better or equal to that of the alternatives.

II. PREVIOUS RELATED WORKS

In this Section, we provide a succinct review of three topics which
are related to the assessment of theoretical / practical aspects of the
proposed inertial sequence.

A. A brief review of FISTA

The Fast Iterative Shrinkage Thresholding algorithm (FISTA) [1]
is a proximal gradient method [14, Section 7.1.1] which considers

5[11] also presented an ordinary differential equation (ODE) interpretation
of the FISTA algorithm and evaluated the merit of several re-start strategies
for the inertial sequence.

6[3] also exploited FISTA’s ODE interpretation.
7It is straightforward to notice that (6a) is indeed a generalization of (5b),

i.e. set a = b ≥ 2 in (6a).
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g(u) = λ · ‖u‖1 along with a Nesterov’s multi-step gradient method
[9], i.e. the gradient is evaluated at a particular linear combination
of the past two iterates, and can be proved to achieve a theoretical
O(k−2) rate of convergence.

FISTA is usually referred to as an accelerated version of ISTA
(Iterative Shrinkage Thresholding algorithm) [15], and it is popular
in image processing applications that promote sparsity, such as
basis pursuit denoising (BPDN) [12], Total Variation [16], Principal
Component Pursuit [17], etc.

The computational steps of FISTA are given in (2)-(3), where γk
is referred to as the inertial sequence and αk denotes a non negative
real number such that αk ≤ 1

L
, where L is the Lipschitz constant of

∇f .
In Section I we have already given remarks about the importance

of the inertial sequence γk. However, from a practical point of view,
the selection of the parameter αk is also as important, since for large-
scale problems, L is not always known or computable. In the original
work, [1, Section 3] proposed a backtracking line search, to determine
αk at each iteration; however such selection has a drawback: multiple
evaluations of the cost functional, which, for large-scale problem, can
be computationally costly. While there are several alternatives (see
for instance [18]), in our computational results (Section IV) we will
use (7), a variant of the Cauchy step-size

αk =
‖s(k) � p(k)‖22
‖Φ(s(k) � p(k))‖22

, (7)

where s(k) = I[|u(k)|>0], I[COND] represents the Indicator function8

and � represents element-wise product. We note that the computation
of (7) is fast; furthermore, it was originally tested in context of sparse
representations [19], and more recently, it has also delivered good
results in the convolutional sparse coding context [20], [21]

B. Wavelet domain methods

A simple yet effective method for image restoration is to consider
that the noise-free version of the observed data has a sparse represen-
tation in the Wavelet domain (among many others, see [22, Chapter
11]). In this case, the minimization of the general composite function
F (u) has the form of

arg min
{u}

1

2
‖AΦu− b‖22 + λ‖u‖1, (8)

where A is a linear operator and Φ represents the inverse Wavelet
transform.

While problem (8) can be easily solved via a large number
of algorithms, here we highlight that its FISTA-based solution is
straightforward, and will be used to solve the inpainting problem,
i.e. A is a mask operator (in our case, a diagonal matrix with values
either 1 or 0) and b, the observed image, is equal to the noise-free
image multiplied by A. We consider this problem (details in Section
IV-B) to match one of the examples considered in [10].

C. Convolutional Sparse Coding (CSC)

Convolutional sparse representation (CSR) [23], [24] models an
entire signal or image as a sum over a set of convolutions of
coefficient maps, of the same size as the signal or image, with their
corresponding dictionary filters. Given a set of separable or non-
separable9 dictionary filters, the most widely used formulation of the

8Equal to 1 if “COND” is true, 0 otherwise
9[25], [26], [27] showed that natively learned separable filters consistently

attain the same reconstruction quality (noise-free and restoration cases) as
when using standard non-separable filters of the same characteristics (size
and number).

convolutional sparse coding (CSC) problem is Convolutional BPDN
(CBPDN) [28], defined as

arg min
{uk}

1

2

∥∥∥∥∥
K∑
k=1

Hk ∗ uk − b

∥∥∥∥∥
2

2

+ λ

K∑
k=1

‖uk‖1, (9)

where {Hk} represents a set of K, L1 × L2 filters, {uk} is the
corresponding set of coefficient maps (each with N1×N2 samples),
b is the N1×N2 input image, and λ is the regularization parameter.

There exist several algorithms that directly solve (9), which can
be loosely differentiated by the domain in which the convolutions
are performed. Earlier spatial domain approaches were based on
ISTA [29] or FISTA [30], assuming a non-separable filter bank (FB)
{Hk}, while more recently, [20] proposed a FISTA based algorithm,
assuming a separable FB. On the other hand, frequency domain
approaches are usually based on the ADMM framework [13], [31],
[28], although some recent works [32], [21] have made use of the
Accelerated Proximal Gradient / FISTA framework.

III. ANALYSIS OF THE PROPOSED INERTIAL SEQUENCE

In order to analytically assess the proposed inertial sequence
(6a), we first summarize the key results from [1]. To that end, we
will follow the procedure described in [10]; in particular, we first
reproduce [10, Th. 1]:

Theorem 1. For any u(0) ∈ RN , if the (non-negative) sequence {tk},
k ∈ N+ satisfies (4b), i.e. t2k− tk ≤ t2k−1, ∀k ≥ 2, and t1 = 1, then
sequence {u(k)}, generated by (2)-(3), with αk = α ≤ 1

L
, satisfies

∀k ∈ N

F (u(k))− F (u∗) ≤ 1

2 · α · t2k
‖u(0) − u∗‖22 (10)

for any minimizer u∗ of F .

While it is straightforward to show that sequences (5a), (5b), as
well as the proposed sequence (6a), i.e. tk = k−1+a

b
, all with

t1 = 1, satisfy (4b), we will explicitly show such relationship for
our proposed sequence. In fact, we seek ρk = t2k − tk − t2k−1 ≤ 0,
thus by using (6a), we get

ρk =

(
k − 1 + a

b

)2

− k − 1 + a

b
−
(
k − 2 + a

b

)2

= − b · (k − 1 + a)

b2
+

2 · (k − 1 + a)

b2
− 1

b2
; (11)

if we take b = 2, then

ρk = −1

4
< 0 (12)

∀a ≥ 1, since sequence tk, and the inertial sequence generated by
it, given in (6b), i.e. γk = k−3+a

k+a
for k ≥ 2 (by definition, γ0 = 0)

must be non-negative. Here we stress that parameter a is basically a
“free” parameter: from a theoretical point of view (although there are
practical limitations), we can choose any value of a ≥ 1; as we will
show next, by adequately selecting a, we can directly control the
bound on F (u(k)) − F (u∗) for small/medium values of k, which
results (i) in a faster reduction of the cost functional of F and (ii) in
an improved rate of reconstruction quality (see Section IV).

For sequences (5a), (5b), as well as the proposed sequence (6a),
Theorem 1 ensures that

∀n ∈ N F (u(k))− F (u∗) ≤ C

t2k
; (13)

in Figure 1 we plot (in log-scale) the evolution of 1
t2
k

for (5a), (5b)
with b = {2, 3, 4}, and (6a) with b = 2 and a = {2, 25}, all with

2019 27th European Signal Processing Conference (EUSIPCO)



tk = 1. While for large enough values of k, all sequences will be
indistinguishable, clearly the proposed sequence, with large values
of parameter a, can impose a better bound of F (u(k))− F (u∗) for
small/medium values of k.
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Fig. 1: The evolution of 1
t2
k

is plotted for sequences (5a), (5b) with
b = {2, 3, 4}, and the proposed inertial sequence (6a) with b = 2
and a = {2, 25}.

A. Additional comments

1) Relationship between (5b) and (6a): As it was mentioned in
the Introduction (Section I), the proposed sequence (6a) can be
understood as a generalization of (5b). Indeed, if we take a = b ≥ 2
in (6a) we recover (5b); this is also experimentally shown in Figure
1 for the case of a = b = 2.

However, by decoupling the values a and b, (6a) offers more
flexibility than (5b) when selecting the actual inertial sequence,
and, crucially, it also offers a fine control over the bound of
F (u(k))− F (u∗) for small/medium values of k.

2) Selecting b > 2 in (6a): In the previous Section, we showed
that (6a) satisfies (4b) for b = 2. Clearly, if we take b > 2, (6a) also
satisfies (4b), however from a computational point of view10 we have
not observed any practical gain by doing so.

3) Selecting a variable parameter in (6a): From our analysis,
summarized by (11)-(12), variable a in (6a) is a free parameter, thus
it can be replaced by ak, i.e. a function of k.

In this case, ρk (see (11)) considering b = 2 will be given by

ρk =

(
k − 1 + ak

2

)2

− k − 1 + ak
2

−
(
k − 2 + ak−1

2

)2

=
βk · (ak − ak−1)

4
− ak − ak−1

2
− 1

4
, (14)

where βk = 2k − 2 + ak + ak−1. Since βk > 0 ∀k ≥ 1, and, at
least, it grows as k

2
, (14) can be forced to be negative by considering

ak ≤ ak−1. A simple rule to select ak, such as taking a1 equal
to a large value and then decreasing it to a particular value, e.g.
2, can improve FISTA’s practical performance for some cases: In
our experimental results (Section IV) we show numerical evidence
that such rule does improve FISTA’s practical performance for the
Wavelet-based inpainting problem (see Section IV-B); however, for
the CSC problem (Section IV-C) such rule does not give any practical
gain.

IV. COMPUTATIONAL ASSESSMENT OF THE PROPOSED INERTIAL

SEQUENCE

A. Experimental setup

The set of experiments detailed below were carried out using
Matlab, running on an Intel i7-6820HK (2.70 GHz, 8GB Cache,
64GB RAM) based laptop with a nvidia GTX1070 (8GB memory)

10Due to space constraints, we do not present such experiments in Section
IV, however they can be reproduced via our freely available Matlab code [33]

GPU card; our publicly available GPU-enabled Matlab code [33] can
be used to reproduce the computational results presented here, along
with some extended simulations.

Our experiments focus on assessing the computational behavior
of several inertial sequences (I.Seq) when solving (i) the Wavelet-
based inpainting (noiseless) problem and (ii) the CSC (noiseless and
noisy cases) problem, along with separable filters, via a FISTA-based
approach, which runs for at most 300 iterations11.

The considered I.Seq are those generated by (5a), (5b) with b =
{2, 3, 4}, and the proposed I.Seq (6a) with b = 2 and a variable
(see Section III-A3) or fixed parameter a, heuristically chosen in
both cases. For both problems, we consider five test images (“Lena”,
“Barbara”, “Kiel” and “Bridge”, each 512 × 512 pixel, and “Man”,
1024× 1024 pixel).

B. Wavelet-based inpainting (W INPT) problem

For the W INPT problem we consider that A in (8) is a diagonal
matrix, whose entries are either 0 or 1, i.e. a mask operator. For the
results presented below, we consider that the mask operator remove
50% of the original image pixel at random locations. Furthermore,
we select Φ in (8) as the orthonormal Daubechies wavelet transform,
in order to match one of the examples considered in [10]

In Figure 2 we depict the cost functional and reconstruction (SNR)
evolution when solving the W INPT problem with λ = 7.5e-4 along
with the considered I.Seq, for the “Barbara” test image12.
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Iteration

35
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45

50 I.Seq. via (6a)

I.Seq. via (6b), b=2

I.Seq. via (6b), b=3

I.Seq via (6b), b=4

I.Seq via (7a), b=2, a=80
(*)

0 50 100 150 200

Iteration
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0

5

10

13

S
N

R

Fig. 2: Comparison between several inertial sequences when solving
the W INPT problem (8) with λ = 7.5e-4 for the “Barbara”
test image12. The top/bottom plots depict the cost functional, in
logarithmic scale, and reconstruction (SNR) evolution versus global
iterations. (∗) The variable parameter selection, described in Section
III-A3 is used: ak = max(80− 1.56k, 2).

The cost functional in Figure 2 (top plot, in logarithmic scale)
clearly follows the theoretical cost functional bound13, depicted in
Figure 1, up to the iteration where the stopping criterion is met10.

11It is well-known that a local oscillatory behavior can be observed in
FISTA (originally observed in [34]; see also [35] for a formal description);
thus, in our code, we include an exit condition if such behavior is observed.

12These results are representative; results for other test images, noise levels,
λ values or wavelet / convolutional dictionaries can be generated by our
companion Matlab code [33].

13The I.Seq generated by (5a) and (5b) with b = 2 have a very similar
performance, whereas (5b) with b = {3, 4}, while also exhibiting a quadratic
reduction of the cost functional, their actual values are larger than any of the
former for small/medium values of k.
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For the W INPT problem we have observed that using the variable
parameter selection, described in Section III-A3, gives the best trade-
off between cost functional reduction and reconstruction quality. In
particular we set ak = max(80− 1.56k, 2): i.e. variable a decreases
from 80 down to 2 for the first 50 iterations.

C. CSC problem

For this problem (both noiseless and noisy cases), we use a set
of 36 separable filters, size 12 × 12, learned via [25], and solve
the CSC problem (9) via [20], which is a FISTA-based approach,
explicitly tailored for separable filters. We must note that [25], [26],
[27] showed that natively learned separable filters consistently attain
the same reconstruction quality (noise-free, denoising and inpainting
cases) as when using standard non-separable filters of the same
characteristics (size and number). The above mentioned test images
were not used in the dictionary learning stage.

1) Noiseless case: In Figure 3 we depict the cost functional and
reconstruction (SNR) evolution when solving the CSC problem (9)
with λ = 0.01 along with the considered I.Seq, for the noiseless
“Man” test image12.
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Fig. 3: Comparison between several inertial sequences when solving
the CSC problem (9) with λ = 0.01 for the “Man” test image12. The
top/bottom plots depict the cost functional, in logarithmic scale, and
reconstruction (SNR) evolution versus global iterations.

The cost functional (Figure 3, top plot, in logarithmic scale) is
shown from iteration 15 onward (up to 300) in order to visually
distinguish the effect of each I.Seq. As for the W INPT problem
(see Section IV-B), all evaluated I.Seq follow the theoretical cost
functional bound13, depicted in Figure 1.

2) Noisy case: In Figure 4 we depict the cost functional and
reconstruction (SNR) evolution when solving the CSC problem (9),
along with the considered I.Seq, for the noisy (corrupted with un-
correlated additive Gaussian noise, σ2

η = 0.01) “Lena” test image12.
The regularization parameter, λ = 0.245, was manually selected to
produce the best (SNR) quality result for the I.Seq defined by (5a),
i.e. FISTA along with the original I.Seq proposed in [1].

The cost functional (Figure 4, top plot, in logarithmic scale) is
shown from iteration 10 up to 100 in order to visually distinguish the
effect of each I.Seq. (from iteration 100 onward there is no significant
change for any case). As for the W INPT problem (Section IV-B)
and the noiseless CSC case (Section IV-C1) all the considered I.Seq
follow the theoretical cost functional bound13, depicted in Figure 1,
where we note that the behavior of the proposed I.Seq is superior
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I.Seq via (7a), b=2, a=80
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Fig. 4: Comparison between several inertial sequences when solving
the CSC problem (9), noisy case (uncorrelated additive Gaussian
noise, σ2

η = 0.01) with λ = 0.245 for the “Lena” test image12.
The top/bottom plots depict the cost functional, in logarithmic scale,
and reconstruction (SNR) evolution versus global iterations.

to all the alternatives in terms of speed of reduction of (9)’s cost
functional while achieving the same reconstruction quality.

D. Discussion

For the two considered (W INPT and CSC) problems, the ex-
perimental results detailed in Sections IV-B and IV-C heuristically
confirm the worthwhile theoretical behavior of the proposed I.Seq:
for small/medium values of k, it exhibits a faster speed of reduction
of the cost functional, of either (8) or (9), than any of the popular
I.Seq choices (see (5a) and (5b)).

For the W INPT problem, the proposed I.Seq roughly saves
between 30% and 50% of global iterations w.r.t. (5a) and variants
of (5b) to attain the same level of reduction in the cost functional
(see Fig. 2). Furthermore, its associated rate of reconstruction quality
(SNR) follows a similar trend, outperforming the alternatives.

Similarly, for the CSC problem, the proposed I.Seq also roughly
saves between 30% and 50% of global iterations w.r.t. the alternative
I.Seq (see Figures 3 and 4). However, in this case, the associated rate
of reconstruction quality varies depending on the noise level: for the
noiseless case, our proposed I.Seq also clearly outperforms all the
alternatives; however, for the noisy case all the alternatives behave
very similar.

V. CONCLUSION

In this work we have proposed a novel inertial sequence for FISTA,
and assessed its theoretical properties along with its computational
worthiness in the context of Wavelet-based inpainting (W INPT) and
Convolutional Sparse Coding (CSC).

While well-established inertial sequences, as well as the proposed
one, used in FISTA, all deliver a theoretical O(k−2) rate of con-
vergence, their actual speed varies for small/medium values of k
(or global iterations). Particularly, in the context of W INPT and
CSC, the proposed inertial sequence exhibits the best performance
(cost function reduction point of view, and in some instances,
reconstruction quality point of view) for small/medium values of k
and can be used to reduce FISTA’s global number of iterations by
30% ∼ 50%.
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