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Abstract—Many real systems have inherently some type of
sparsity. Recently, the feature least-mean square (F-LMS) has
been proposed to exploit hidden sparsity. Unlike the existing
algorithms, the F-LMS algorithm performs a linear combination
of the adaptive coefficients to reveal and then exploit the hidden
sparsity. However, many systems have also plain besides hidden
sparsity, and the F-LMS algorithm is not able to exploit the
former. In this paper, we propose a new algorithm, named simple
sparsity-aware F-LMS (SSF-LMS) algorithm, that is capable of
exploiting both kinds of sparsity simultaneously. The hidden
sparsity is exploited just like in the F-LMS algorithm, whereas
the plain sparsity is exploited by means of the discard function
applied to the filter coefficients. By doing so, the proposed SSF-
LMS algorithm not only outperforms the F-LMS algorithm
when plain sparsity is also observed, but also requires fewer
arithmetic operations. Numerical results show that the proposed
algorithm has faster speed of convergence and reaches lower
steady-state mean-squared error (MSE) than the F-LMS and
classical algorithms, when the system has plain and hidden
sparsity.

Index Terms—adaptive filtering, LMS algorithm, feature ma-
trix, discard function, sparsity

I. INTRODUCTION

Adaptive filtering algorithms have been utilized in several

applications over the last decades. In particular, the least-

mean square (LMS) is one of the most popular algorithms

and since its development in 1960 [1], it has been considered

the benchmark in the field of adaptive learning. The LMS

algorithm has been employed in many real problems, such

as active noise control [2], digital equalizers [3], continuous-

time filter tuning [4], system identification [5], just to mention

a few.

Recently, it has been verified that many systems have some

type of sparsity, be it plain or hidden. The plain sparsity occurs

when the system has most coefficients with low magnitude,

i.e., sparsity is directly observed in the current representation

of the system. Hidden sparsity, on the other hand, is observed

when some mathematical manipulation is applied to reveal

the system sparsity. Unfortunately, the LMS algorithm does

not take advantage of any type of sparsity. The recently

proposed feature LMS (F-LMS) algorithm [6], on the other

hand, benefits from the hidden sparsity by exploiting some

features inherent to the unknown system.1 Indeed, the F-LMS

algorithm improves steady-state mean-squared error (MSE)

and convergence speed through linear combinations (responsi-

ble for revealing hidden sparsity) of the adaptive coefficients.

The problem of plain sparsity was addressed for a while, and

there exist many algorithms that exploit it [8]–[15]. Many

works have verified that plain sparsity can be best represented

by the ℓ0-norm [16]–[18], and that is the main idea behind the

ℓ0-norm LMS algorithm [19]. By adding a ℓ0-norm penalty on

the filter coefficients to the cost function, the sparsest solution

is acquired.

Many systems have both plain and hidden sparsity. How-

ever, the F-LMS and ℓ0-norm LMS algorithms are not able to

exploit both of them simultaneously. Therefore, by imposing

plain sparsity to the cost function of the F-LMS algorithm, we

can improve its performance so that the new algorithm can

exploit both kinds of sparsity. With that in mind, we propose

to include a penalty function on the adaptive coefficients

in the cost function of the F-LMS algorithm. This penalty

function relies on the so-called discard function [20] so that the

simple sparsity-aware feature LMS (SSF-LMS) algorithm re-

quires fewer arithmetic operations, thus saving computational

resources, and outperforms the F-LMS algorithm when the

system has plain and hidden sparsity2.

This work is organized as follows. Section II introduces the

F-LMS algorithm and presents some examples of feature ma-

trices. Section III describes the proposed SSF-LMS algorithm.

Section IV presents the simulation results of the experiments.

Finally, the conclusions are drawn in Section V.

Notation: Scalars are represented by lower-case letters. Vec-

tors (matrices) are denoted by lowercase (uppercase) boldface

letters. For a given iteration k, the weight vector and the input

vector are denoted by w(k),x(k) ∈ R
N+1, respectively, where

N is the adaptive filter order. The optimum system coefficient

1While the F-LMS algorithm exploits features like lowpass or highpass
spectrum through linear combinations of coefficients, there exist other features
that could not be exploited in the same manner. For example, the tensor LMS
algorithm is capable of exploiting impulse responses that can be decomposed
as the Kronecker product of two lower-dimensional impulse responses [7].

2Recently, an alternative approach based on the ℓ0 norm has been proposed
in [21], but in such work the number of arithmetic operations required by
the proposed algorithm is much larger in comparison with the SSF-LMS
algorithm.
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is denoted by wo. The error signal at the k-th iteration is

defined as e(k) , d(k)−wT (k)x(k), where d(k) ∈ R is the

desired signal. The l1-norm of a vector w ∈ R
N+1 is given

by ‖w‖1 =
∑N

i=0 |wi|.

II. THE F-LMS ALGORITHM USING ℓ1-NORM

The F-LMS algorithm proposed in [6] minimizes the fol-

lowing objective function

ξF-LMS(k) =
1

2
|e(k)|2 + αP (F(k)w(k)) , (1)

where α ∈ R+ represents the weight given to the penalty

function P , which promotes sparsity on the system, and

F(k) is the feature matrix capable of exploiting the features

inherent to the unknown system. This matrix is responsible

for revealing its hidden sparsity, i.e., by applying F(k) to

w(k) we perform a linear combination that intends to create a

sparse vector. In practice, this matrix should be chosen based

on some prior knowledge about the system to be identified. For

example, due to the use of high sampling rates many analog

systems exhibit lowpass feature. In this paper, we assume F(k)
to be time-invariant F [6].

The penalty function P in (1) can be any almost every-

where differentiable sparsity-promoting function to allow for

gradient-based methods [6], [16], [18], [20], [22], [23]. Like

in [6], we choose P to be the ℓ1-norm so that the complexity

of the F-LMS algorithm is only slightly superior to the LMS

complexity. Thus, the resulting objective function is

ξF-LMS(k) =
1

2
|e(k)|2 + α‖Fw(k)‖1, (2)

and the general update equation is given by

w(k + 1) = w(k) + µe(k)x(k)− µαp(k), (3)

where µ ∈ R+ is the step size, which should be small enough

to ensure convergence [24], and p(k) ∈ R
N+1 is the gradient

of function ‖Fw(k)‖1 with respect to w(k).

The complete description of the general F-LMS algorithm

is given in Algorithm 1.

Algorithm 1 The F-LMS using ℓ1-norm

Initialization:

x(0) = w(0) = [0 0 . . . 0]T

choose µ in the range 0 < µ ≪ 1
choose α in the range 0 < α < 1

Do for k ≥ 0
e(k) = d(k)−wT (k)x(k)
Compute p(k), refer to (5) and (7) for example

w(k + 1) = w(k) + µe(k)x(k)− µαp(k)

In the following subsections, we describe two versions of

the F-LMS algorithm exploiting the lowpass and highpass

features of the unknown systems.

A. The F-LMS algorithm for lowpass systems

If the system has lowpass narrowband spectrum, then the

difference between adjacent coefficients of wo is small. By

choosing the feature matrix properly we can minimize the sum

of two adjacent coefficients. In this case, we set F as Fl, where

Fl is an N ×N + 1 matrix defined as

Fl =











1 −1 0 · · · 0
0 1 −1 · · · 0
...

. . .
. . .

0 0 · · · 1 −1











(4)

and ‖Flw(k)‖1 =
∑N−1

i=0 |wi(k)−wi+1(k)|. Therefore, the F-

LMS algorithm for lowpass systems is defined by the recursion

given in (3), but replacing vector p(k) with pl(k) whose

entries are given by

pl,i(k) =



















sgn(w0(k)− w1(k)), if i = 0

−sgn(wi−1(k)− wi(k))

+sgn(wi(k)− wi+1(k)), if i = 1, · · · , N − 1

−sgn(wN−1(k)− wN (k)), if i = N.

(5)

where sgn(·) denotes the sign function.

B. The F-LMS algorithm for highpass systems

Adjacent coefficients have similar absolute values with op-

posite signs if the system has highpass narrowband spectrum.

Then, we seek to minimize the sum of adjacent adaptive

coefficients w(k) since the sum of two consecutive coefficients

is close to zero. This can be accomplished by selecting F as

Fh, where Fh is an N ×N + 1 feature matrix defined as

Fh =











1 1 0 · · · 0
0 1 1 · · · 0
...

. . .
. . .

0 0 · · · 1 1











, (6)

such that ‖Fhw(k)‖1 =
∑N−1

i=0 |wi(k) + wi+1(k)|. Like in

the case of the lowpass filter, we can characterize the F-LMS

algorithm for highpass systems by the recursion given in (3),

but replacing p(k) with ph(k), whose entries are

ph,i(k) =



















sgn(w0(k) + w1(k)), if i = 0

sgn(wi−1(k) + wi(k))

+sgn(wi(k) + wi+1(k)), if i = 1, · · · , N − 1

sgn(wN−1(k) + wN (k)), if i = N.

(7)

III. THE SSF-LMS ALGORITHM

The F-LMS algorithms exploit the hidden sparsity in the

parameters, i.e., the sparsity revealed through the application

of F in w(k). However, there are many cases in which

there exists plain sparsity in the parameters, i.e., wo already

represents a sparse vector. In this paper, we propose an

algorithm that exploits both types of sparsity simultaneously.
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Fig. 1. Impulse response of the unknown systems: (a) impulse response of the first simulation wo,l; (b) impulse response of the second simulation wo,h;
(c) impulse response of the third simulation w

′

o,l
after 2000 iterations.

The SSF-LMS algorithm minimizes the following objective

function

ξ(k) =
1

2
|e(k)|2 + α‖F [fǫ (w(k))]‖1, (8)

where fǫ(w(k)) = [fǫ(w0(k)) fǫ(w1(k)) . . . fǫ(wN (k))]T is

the discard function, whose ith element is defined as [20]

fǫ(wi(k)) =

{

wi(k), if |wi(k)| ≥ ǫ

0, if |wi(k)| < ǫ,
(9)

the parameter ǫ ∈ R+ is a threshold chosen by the user,

generally close to the measurement noise [20]. In comparison

to (2), the objective function in (8) generates the following

update equation

w(k + 1) = w(k) + µe(k)x(k)− µαp(k)Jfǫ(w(k)), (10)

where Jfǫ(w(k)) is a diagonal matrix whose diagonal elements

are defined as

Jfǫ(w(k))i,i =

{

1, if |wi(k)| ≥ ǫ

0, if |wi(k)| < ǫ.
(11)

Therefore, matrix Jfǫ(w(k)) selects the entries of vector

p(k) which are relevant and, as a consequence, one can

implement (10) efficiently by not computing the entries of

p(k) related to the coefficients with small magnitude (plain

sparsity) detected through (11).

The SSF-LMS algorithm is summarized in Algorithm 2.

Vector p(k) in (10) is the same as those shown in Section II,

for lowpass and highpass systems.

Algorithm 2 The SSF-LMS algorithm

Initialization:

x(0) = w(0) = [0 0 . . . 0]T

choose µ in the range 0 < µ ≪ 1
choose α in the range 0 < α < 1
choose ǫ small, close to measurement error

Do for k ≥ 0
e(k) = d(k)−wT (k)x(k)
p(k) = [0 0 . . . 0]T

Do for i = 0 to N

if |wi(k)| > ǫ

Compute pi(k)
w(k + 1) = w(k) + µe(k)x(k)− µαp(k)

IV. SIMULATIONS

In this section, we apply several LMS-based algorithms to

identify some unknown sparse lowpass and sparse highpass

systems aiming at verifying the potential benefits of exploiting

both plain and hidden sparsity simultaneously. The compet-

ing algorithms are: (i) the LMS algorithm; (ii) the F-LMS

algorithm, which exploits only hidden sparsity; and (iii) the

ℓ0-LMS algorithm, which exploits only plain sparsity and

achieves better results than most sparsity-aware LMS-based

algorithms, thus constituting a benchmark among them [18],

[19].

The order of all unknown systems is 99, i.e., they have 100
coefficients, among which 30 to 40 are considered relevant

(that is, their magnitudes are much greater than zero, as illus-

trated in Fig. 1). The adaptive filter order is N = 99. The input

signal is a zero-mean white Gaussian noise with unit variance.

The signal-to-noise ratio (SNR) is chosen as 20 dB. All

algorithms are initialized with the vector w(0) = [0 · · · 0]T ,

furthermore α = 0.05, σ2
m = 10−5 (to be explained in the

next paragraph) and ǫ = 10−2. We used the Laplacian form

with first order truncation for the ℓ0-LMS, as in [19], and we

set the weight given to the ℓ0 approximation as κ = 2× 10−3

and the parameter that controls the quality of the ℓ0-norm

approximation is β = 5 [18], [19]. The values of the step

size µ are informed later for each simulation result. The

MSE learning curves of the presented algorithms are computed

averaging the outcomes of 500 independent trials.

In the first experiment, we compare the performance of

the aforementioned algorithms when the unknown systems do

not change along the iterations. The first unknown system,

wo,l, is a block sparse lowpass system such that the first 20
coefficients are zero-mean white Gaussian with variance σ2

m,

the next 30 coefficients are constant and equal to 0.4 and the

last 50 coefficients are also zero-mean white Gaussian with

variance σ2
m. Fig. 1(a) depicts this system impulse response.

The second unknown system, wo,h, is the same as the first

one, but the non-white Gaussian coefficients with odd and

even indexes are −0.4 and 0.4, respectively. We illustrate this

system impulse response in Fig. 1(b).

In the second experiment, we test the tracking capability

of the SSF-LMS algorithm in comparison to the others. The

unknown system is the same block sparse lowpass system wo,l
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used in the first experiment. However, after 2000 iterations, the

system coefficients change to

w′

o,l(n) =



















0.1n

9
− 0.38, 51 ≤ n < 61

0.3, 61 ≤ n < 71

−
0.1n

19
+ 0.65, 71 ≤ n < 91,

where n is the coefficient index. The other coefficients are

zero-mean white Gaussian with variance σ2
m. The other pa-

rameters are the same as in the first experiment. Fig. 1(c)

depicts this impulse response.
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Fig. 2. MSE learning curves of the LMS, F-LMS, ℓ0-LMS, and SSF-LMS
algorithms considering wo,l: (a) all algorithms with the same step size: µ =

0.015; (b) LMS, F-LMS, ℓ0-LMS, and SSF-LMS algorithms with step sizes
equal to 0.003, 0.0055, 0.005, and 0.007, respectively.

Fig. 2 illustrates the MSE learning curves of the LMS,

F-LMS, ℓ0-LMS, and SSF-LMS algorithms considering the

block sparse lowpass system wo,l in two different simulations.

In Fig. 2(a), all algorithms use the same step size µ = 0.015
so that they exhibit similar convergence speeds. We notice that

the SSF-LMS algorithm achieves the lowest MSE, followed by

the F-LMS, ℓ0-LMS and LMS algorithms. Although the MSE

results of the SSF-LMS algorithm are only slightly superior,

in relation to the F-LMS algorithm, one must remind that

the SSF-LMS algorithm performs fewer arithmetic operations

due to the plain sparsity presented in wo,l. In Fig. 2(b), we

compare the algorithms convergence rates fixing the steady-

state MSE. Hence, we change the step sizes for the LMS,

F-LMS, ℓ0-LMS, and SSF-LMS algorithms to 0.003, 0.0055,

0.005, and 0.007, respectively. We observe that the SSF-LMS

algorithm converges much faster than the others. It is worthy

mentioning that the SSF-LMS algorithm reaches these results

performing fewer arithmetic operations due to the existing

plain sparsity. Therefore, the SSF-LMS algorithm outperforms

the F-LMS, ℓ0-LMS and LMS algorithms, for systems with

plain and hidden sparsity.

Table I depicts the number of arithmetic operations for

each algorithm during steady-state considering wo,l. One can

notice that, in addition to achieving better performance, the

SSF-LMS algorithm also requires fewer arithmetic operations

in comparison to the F-LMS and ℓ0-LMS algorithms. This

reduction in computations occurs whenever there is plain

sparsity in the unknown impulse response, since in this case

the SSF-LMS algorithm does not compute every entry of

vector p(k) (refer to Algorithm 2). Thus, in the limiting

case where all coefficients are relevant (there is no plain

sparsity in the system), the SSF-LMS algorithm would perform

exactly the same number of operations required by the F-LMS

algorithm.

TABLE I
NUMBER OF ARITHMETIC OPERATIONS PER ITERATION DURING

STEADY-STATE CONSIDERING wo,l .

Algorithm # Multiplications # Additions

SSF-LMS 232 321

F-LMS 301 497

LMS 201 200

ℓ0-LMS 341 340
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Fig. 3. MSE learning curves of the LMS, F-LMS, ℓ0-LMS, and SSF-LMS
algorithms considering wo,h: (a) all algorithms with the same step size: µ =

0.015; (b) LMS, F-LMS, ℓ0-LMS, and SSF-LMS algorithms with step sizes
equal to 0.003, 0.0055, 0.005, and 0.007, respectively.

In Fig. 3, we show the results for the block sparse highpass

system wo,h. Fig. 3(a) depicts the performance of the algo-

rithms when all of them have the same step size (µ = 0.015).

Once again the SSF-LMS algorithm reaches the lowest MSE

but the difference between the F-LMS and the SSF-LMS

algorithms is not remarkable. We can observe in Fig. 3(b)

the speed of convergence of each algorithm, when they have

different step size values. As in Fig. 2, the SSF-LMS algorithm

achieves the best convergence rate.

Since the impulse response wo,h has the same number

of relevant coefficients as wo,l, the number of arithmetic

operations of each algorithm during steady-state is exactly the

same as those depicted in Table I.

According to Fig. 4 we observe that the SSF-LMS algorithm

reaches the steady-state first, despite the sudden variation in

the unknown impulse response.

Table II presents the number of arithmetic operations during

steady-state considering w′

o,l. Once again the SSF-LMS algo-

rithm requires lower amount of operations (in total) than the

F-LMS and the ℓ0-LMS algorithms, but, in this simulation, it

required more additions than the ℓ0-LMS algorithm. However,

this is not a major problem as the SSF-LMS algorithm

performs much fewer multiplications, which are operations

that demand more computational power than additions.

V. CONCLUSIONS

In this paper, we introduced a penalty function to the cost

function of the F-LMS algorithm, so that both types of sparsity
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Fig. 4. MSE learning curves of the LMS, F-LMS, ℓ0-LMS, and SSF-LMS
algorithms considering that the unknown system is wo,l in the first 2000

iterations, and suddenly changed to w
′

o,l
. The step sizes for each algorithm

are the same as those used in Fig 2(b).

TABLE II
NUMBER OF ARITHMETIC OPERATIONS PER ITERATION DURING

STEADY-STATE CONSIDERING w
′

o,l
.

Algorithm # Multiplications # Additions

SSF-LMS 242 361

F-LMS 301 497

LMS 201 200

ℓ0-LMS 321 320

can be exploited. Indeed, the discard penalty function exploits

the plain sparsity, whereas the feature matrix applied to the

adaptive coefficients results in a sparse vector, i.e., reveals the

hidden sparsity of the system. We evaluated the performance of

the SSF-LMS algorithm, by elaborating some simple systems

that present plain and hidden sparsity simultaneously. Finally,

simulation results demonstrated that the SSF-LMS algorithm

outperforms the other algorithms in terms of MSE, while

also requiring fewer arithmetic operations than the F-LMS

algorithm.

In future works, we will explain strategies to learn the

desired feature online, thus eliminating the need of prior

information about the system.
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