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Abstract—This paper addresses acoustic simulation in dynamic
environments for robot audition. For such environments, we
consider three cases, that is, a moving microphone, a moving
sound source, and a combination of the two. The proposed
method simulates a dynamic environment by assuming that a
motion trajectory of a microphone and/or a speaker can be
discretized. We validated the proposed method through the
accuracy of the simulated signals in terms of frequency and
volume, and the performance of automatic speech recognition
(ASR) with an acoustic model trained by simulated speech sig-
nals. The experimental results showed that the proposed method
can simulate the sound properties of volume and frequency in
dynamic environments well. The performance of ASR is improved
with the acoustic model trained with the simulated speech signals.

Index Terms—acoustic simulation, robot audition, moving
sound source, moving microphone, dynamic environment, robust
automatic speech recognition

I. INTRODUCTION

Robot audition has been studied for many years [1]. How-
ever, most studies assumed that environments were stationary.
In practice, most environments are dynamic. Hereafter, a scene
in which there is speaker and/or microphone in motion will
be referred to as a dynamic environment. Automatic speech
recognition (ASR) is an important function of robot audition
because a robot should verbally communicate with people. In
dynamic environments where such a robot is operated, ASR
becomes a challenging issue. An effective way for this issue
is to train an acoustic model using a large amount of speech
data which is recorded in similar acoustic conditions [2].
However, collecting such a large amount of data in dynamic
environments is time consuming. Simulating such kind of
speech is considered a feasible way to solve this problem.

Due to the continuous change in the spatial relationship be-
tween the sound source and the microphone, the characteristics
of the recorded sound signal also change. Room Impulse Re-
sponse (RIR) describes the transfer function between the sound
source and the microphone [3]. There are several methods
available for the estimation of RIR [4]—[8] in a stationary case.
By using the information of RIR and the trajectory of motion,
an acoustic simulation method for a moving sound source has
been discussed by Matsumoto et al. [9] and Nakajima et al.
[10]. However, according to the authors’ knowledge, how to
simulate both a sound source and a microphone in motion has
not been studied yet.
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In this study, we propose an acoustic simulation method
for simulating recordings in a dynamic environment where
the sound source and/or the microphone is in motion. Note
that it is difficult to simulate a moving signal in a continuous
space, the signal discussed in this study will be sampled
in a discrete space. The RIR at each sampling point of
the moving trajectories can be calculated by using an open
source RIR generation toolkit [4]. We construct an RIR matrix
representation for the discrete trajectory. The sound signal
captured during the motion can then be simulated.

We validated the proposed method in terms of frequency
and volume characteristics. For frequency, we attained a mean
error of 0.032 Hz compared to the ground truth obtained from
the Doppler effect. For our volume experiment, we observed
that the errors between simulated sounds and recorded sounds
maintained to be the same levels even when the motion speed
was as high as 1.5 m/s. In addition, we used our simulated data
to train an acoustic model for ASR in dynamic environments.
The word error rate (WER) was reduced 18.10% relative to
the baseline.

II. RELATED WORK

In robot audition, beamforming [11], sound source localiza-
tion [12], and tracking [13] techniques have been commonly
studied to handle distortion of speech signal processing in
dynamic environments. However, motion brings volume and
frequency distortion, the above-mentioned methods are diffi-
cult to mitigate this type of distortion. Acoustic simulation in
dynamic environments will provide a different perspectives to
study that type of distortion.

In [14], Chowning discussed a method to simulate a moving
sound source. However, the information of room reverberation
and Doppler shift should be calculated and explicitly added.

In [10], Nakajima et al. discussed how to simulate a moving
sound source by using RIR along the sampling points of mov-
ing trajectory. In this method, the moving sound source was
treated as discrete sampling points on the moving trajectory.
Sound is simulated at each sampling point by assuming that the
sound is stationary. Since the RIR simulation method has been
well studied, by using a mature RIR generation tool, sound
can be simulated to contain features of room reverberation,
frequency change, and volume change without using other
additional information.
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In this study, we extend Nakajima’s acoustic simulation
method to support a moving microphone. Because in the
human-robot speech communication, the movement of both
the speaker and the microphone should be considered.

III. ACOUSTIC SIMULATION FOR DYNAMIC
ENVIRONMENTS

In this section, Nakajima’s acoustic simulation method for
dynamic environments is firstly introduced [10]. Then we dis-
cuss our acoustic simulation method for a moving microphone.
Finally, a combination of moving sound source and moving
microphone is proposed.

A. Simulation for a moving sound source

When a sound source s(t) located at p, a microphone m
located at ¢, and the RIR between the sound source and
the microphone h,,(t) are given, the observed signal x,,(t)
captured with m is defined by,

tpa(®) = 3 gl — 1)s(0), 0
n=0

where ¢ is the time index, and NV is the length of h,,.

Eq. (1) works only when the sound source and microphone
are stationary. To relax this limitation, by defining the trajec-
tory of the sound source as p = [p(0),---,p(t), - ,p(T —
1)]7, the moving sound source can be treated as many dis-
cretized point sound sources located along the trajectory. Each
point sound source is expressed by,

[5(0),0,0,...,0]",

Sp(0)
sy = [0,8(1),0,...,0]",
spy = [0,0,...,s(t),...,0]",
sper—1y = [0,0,...,s(T —1)". )

The observed signal of these point sound sources, &), can
be calculated by using Eq. (1). The observed signal T, is the
summation of all ;. It is also defined as the form of matrix
multiplication,

Tpq = Hpgs, 3)
s = [8(0)7 8(1)7 8(2)7 B S(t)v B S(T - 1)]T )
hip(0)q (0) 0 0 T
hip(0)q(1) his(1)4(0)
: hﬁ(l)q(l)
H;q = )
"  haa(N = 1) hypyg(N —2)
0 hp1)g(N = 1)
hip(r—1)4(0)
| 0 0 hy(r—1yg(N — 1)]

where hj;)4(n) is the n-th sample of the impulse response
between the sound source located at p(¢) and a microphone
located at q.

B. Simulation for a moving microphone

We propose an acoustic simulation method to support
a moving microphone by extending Nakajima’s method.
We define a trajectory of a moving microphone as ¢ =
[G(0),---,G(t), -+ ,4(T + N — 2)]T, and a sound source is
located at p. The problem can be defined in a similar discrete
form. The recorded signal of the moving microphone at each
point of §(t) can be calculated by,

T4ty = Hpgry slt], 4)

where H ;) is the impulse response matrix at position G(t),
s[t] means the ¢-th element of the vector s. The recorded signal
of the moving microphone can be expressed as,

Tpg = [T4(0): Tq(1)s- - - > Ta(k)s - - v7x(§(T+N72)}T . 5)
Tpg can also be defined as the form of matrix multiplication.
Tpg = Hpygs, (6)
Hpq = [h@()? hql, ey h@k, Ce thJerz]T
[hﬁ(k>P(k)7 hl?(k)p(k — 1), . T s
haryp(0),0(T —k—1)]", (k<N -—1)

[0(k — N + 1), hy(r)p(N — 1),
hé(k)p(N - 2)7“‘ s
hawyp(0),0(T —k—=1)]", (N-1<k<T-1)

[0(k— N 4+ 1), hgryp(N —1),-- -,
T
hawp(k +1-=T)]", (k>T —1)

where hg(r)p(n) is the n-th sample of the RIR between
microphones at §(k) and the sound source located at p. 0(Z)
represents a Z-dimentional zero vector

C. Extension to support both a microphone and a sound
source in motion

For this problem. The ideas used in sections III-A and III-B
can be considered as, firstly assuming that the sound source is
in motion and the microphone is stationary. Then we introduce
the case when the microphone is in motion. By a combination
of Eq. (3) and Eq. (6), we define a trajectory of a moving sound
source as p and a moving microphone as ¢. The observed
signal with both the microphone and the sound source in
motion is defined as,

73S (O]
Hi’é = [h07h17 e >hk7 e 7hT+N72]T 5

[hé(k)ﬁw)(lf% haypay (k — 1),T- .
hakyper (0),0(T =k = 1)] ",

Tpg =

(k< N-1)

harypk—N+2) (N —2), -+ 3
hatep (00,01 —k —1)]", (N—1<k<T—1)

[0(k— N +1), hq<k)ﬁ<k,N;1)(N -1),---,
hawper—ny(k+1=T)]", (k>T-1)

where hg(i)5(k) () is the n-th sample of the RIR between the
microphone at (k) and the sound source located at p(k).
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IV. EVALUATION

A. Experimental setting

In this section, the following three terms were evaluated:
frequency, volume, and ASR.

The properties of sounds are changed due to movement.
The frequency change of sound obeys the Doppler effect.
The change in the distance between the sound source and the
microphone causes that in volume. Therefore, the proposed
methods were evaluated in terms of frequency and volume.
For frequency, the signal simulated with a fixed moving speed
is compared to the theoretical value under the Doppler effect.
For volume, two kinds of distance measures were compared.
One was the distance between simulated and recorded speech
signals, and the other was the one between the recorded and
the original speech signals. We also performed an experiment
to evaluate the performance of ASR in dynamic environments.

For all experiments, we prepared seven kinds of sound
datasets, all data was stored in wave form and the sample
rate was set as 8 kHz.

DI: Simulated pure tones.

D2: Down-sampled WSJ corpus (evaluation set).

D3: Down-sampled WSJ corpus (30 sentences selected
from the evaluation set).

D4: Recorded speech signals for D3.

D5: Simulated speech signals for D4.

D6: Down-sampled WSJ corpus (training set).

D7: Simulated speech signals for D6.

D1 is used for frequency evaluation. We prepared three
kinds of pure tones as the sound sources. The frequency’s
settings are 250 Hz, 1 kHz, and 4 kHz. The simulation was
performed at nine kinds of fixed speeds for each frequency
setting. The speed’s settings are 0.1,0.2,0.5, 1, 2,5, 10, 20 and
50 m/s. We also considered three different movement patterns:
a moving sound source, a moving microphone and both on the
move. Hence 3 sounds with totally 3 (frequency) x 9 (speeds)
X 3 (motion patterns) = 81 kinds of motion settings were
simulated.

D3, D4 and D5 are used for volume evaluation. We recorded
the speech signal of D4 played from a loudspeaker in motion in
an anechoic room (6.2m x 4.8 m x 5.1 m). For the recording,
a person held a microphone and another held a speaker. They
walked along a straight line. We also used a camera to capture
the recording situation, to confirm the location of the moving
microphone and the moving sound source. The speech was
recorded in three kinds of speed settings. The speeds are
around 0.7 m/s, 1.0 m/s, and 1.5 m/s. For each speed setting,
ten sentences from the Wall Street Journal (WSJ) speech
corpus [15] were selected as the sound sources (D3). The
microphone and the speaker move as follows:

« Both microphone and speaker were stationary (st).

o The speaker was stationary and the microphone was
moving (mic).

o The microphone was stationary and the speaker was
moving (ss).

o Both the speaker and the microphone were moving to-
wards the same directions (both).

o Both the speaker and the microphone were moving to-
wards opposite directions (both (oppo)).

Hence, the number of utterances in D4 are 3 (speeds) X
5 (motion patterns) x 10 (utterances) = 150. We manually
obtained the motion trajectory of the microphone and the
speaker in D4 using the captured video. Using the obtained
trajectory, we used D3 to simulate the moving sound sources
and microphones. It was D5.

D2, D3, D4, D6 and D7 are used for the ASR evaluation.
D7 is generated by down-sampled original training dataset
of the WSJ corpus (D6), It contains 37,416 utterances. The
total amount of training data is approximately 80 hours. For
each utterance, one of 10,240 motion patterns was randomly
selected. These motion patterns had different directions of
movement, speeds and starting position for each microphone
and sound source. The details of these motion patterns are
illustrated in Fig. 2. D2, D3 and D4 are used for decoding.
D3 is a subset of D2.

For the simulation, we used a machine with a CPU of Xeon
E5-2687 and a memory of 256GB (GPU was not used). Audio
files sampled at 8kHz and 16 bits were used for the simulation.
The simulation algorithm was implemented by MATLAB.
Twelves threads were used to generate simulation data, and
it took around 70s to generate a 10s voice sample with the
usage of 23 GB memory.

In every experiment, the length of the RIR was set to 0.256s
which were generated based on [4].

B. The frequency evaluation

The observed frequency of a moving sound obeys the
Doppler effect. If we know the speed and frequency of a
sound source or a microphone, the theoretical frequency of
the recorded sound can be calculated. In this experiment, we
measured the frequency of simulated pure tones in motion
in DI. The frequency of theoretical value was compared
with the simulated one. The result is shown in Fig. 1. We
calculated the mean frequency error among different motion
patterns, frequency, and moving speeds. The proposed method
generally showed high simulation performance, but it still
produced a small error. The mean error among all actual
and theoretical frequency was 0.032 Hz, and the standard
deviation was 0.074 Hz. It is observed that as the speed
increases, the error of frequency also increases in Fig. 1(a).
This phenomenon is considered being caused by two reasons.
One is the cancellation of digits and the round-off error during
computation. Another is caused by discretization assumed with
the proposed method. For higher speed, the distance between
adjacent sample points increases, which results in a large
error. Increasing the sampling rate of sound may mitigate this
error, although it is necessary to consider balancing it with
computational cost.
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Fig. 2. The motion patterns of D7: This figure depicts the position of all lines
and points for a microphone and sound source pair. When the microphone
moved along one of the lines, the sound source would be stationary at one of
the points, and vice versa. Considering computational cost, we do not simulate
both a microphone and a sound source in motion. The moving speed was set
from 0.3 m/s to 3 m/s in step of 0.3 m/s. The direction of movement could
be either of the directions of a line. Relative position of points and lines were
measured by the numbers in x-axis and y-axis.

C. The volume evaluation

We designed another experiment to validate simulation
performance in volume. In this experiment, we adopted two
kinds of distance measures. One was the distance between a
recorded speech signal (D4) and their corresponding simulated
signal (D35, hereafter, “simu-recorded”). The other one was the
distance between the original speech signal (D3) and the cor-
responding recorded signal (D4, hereafter, “orig-recorded”). In
both cases, the distance measures are defined by,

N N

1 < 2
D= W}; <Z|$s/o(f7n)|—ZWU’”)') @

n=1 n=1

where z4(f,n), x,(f,n), and x,.(f,n) are amplitude values at
the n-th sample of the f-th frame of the simulated, original,
and recorded speech signal, respectively. N is the length of a
frame, and F' is the number of frames. The smaller D is, the
larger the similarity of volume between two signals is.
When calculating D, two pre-processing steps were per-
formed. First, the offset of the recorded speech signal was
decided to synchronize with the original and simulated speech
signals, and then, the amplitude gain of the simulated speech
signals was adjusted to be a similar level to the recorded ones.
Fig. 3 illustrates the results. Using the two kinds of distance

TABLE I
ASR PERFORMACE IN WER: TWO ACOUSTIC MODELS EVALUATED ON
TWO KINDS OF DATASETS.

Base Base Proposed
clean recorded | recorded

Acoustic Clean acoustic Simulated

model model (D6) acoustic model (D7)
Clean speech | Recorded speech in motion

Test data (D3) P (D4) P

WER (%) 17.98 32.15 26.33

Relative improvement

(%, compared with - - +18.10

Base reocrded.)

measures for the five motion patterns in three different kinds
of speed settings. For all speed settings, it was observed that
D of “orig-recorded” became larger when its relative speed
increased. It means that the signals were recorded differently
from the original signals in a dynamic environment. On the
other hand, “simu-recorded” maintains a similar amount of
average errors even when its relative speed changes. This
indicates that the proposed method can bridge the gap between
stationary and dynamic environments in terms of volume.

D. The ASR evaluation

We believe that acoustic models trained in dynamic envi-
ronments can improve the performance of ASR in similar
environments. In this experiment, the proposed method is
considered to generate speech data for dynamic environments.
We trained two acoustic models. One was trained by using
D6. The other one was trained by using the D7. For evaluation
data, the test datasets D2, D3 and D4 were adapted. “Kaldi”
[16] (Version 5.3), an open source ASR toolkit, was employed
for ASR evaluation. We selected the recipe of WSJ task
without using the big dictionary for language model. It applied
sequence-discriminative training of deep neural networks [17]
to train an acoustic model. Note that the WER of the down-
sampled original training (D6) and test (D2) data set is 6.33%.
Table I shows the result of our ASR evaluation experiment.

The result of the WSJ task in an original clean environment
was shown for comparison (the column of “Base clean”
in Table I). The performance in the dynamic environment
dropped with acoustic model of original clean speech (the
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Fig. 3. The effectiveness of the proposed method in terms of volume. In each
figure, the moving speeds for the microphone and sound source pair are set as
around 0.7 m/s, 1.0 m/s and 1.5 m/s, respectively. The red and blue bars are
the value of D in Eq. (8). The polylines show the relative speed between the
sound source and microphone pair. The x-axis refers to the motion patterns
of D4 and D5, the y-axis on the left is the scale of D, and the y-axis on the
right is the scale of relative speed for each motion pattern.

column of “Base recorded”). Using the acoustic model of our
simulated speech data the result performed better (the column
of “Proposed method”). The relative improvement is 18.10%.
It proves that our proposed simulation method could improve
the performance of ASR in dynamic environments.

V. CONCLUSIONS AND FUTURE WORK

We presented an acoustic simulation method for robot
audition in dynamic environments. The method can simulate
a recorded sound signal where both a microphone and a
sound source are in motion. We assume that motions of the

microphone and the sound source can be discretized and the
sound signal can be constructed with a matrix form using
RIRs. We showed that the proposed method can well simulate
sound properties in terms of volume and frequency. We also
applied our proposed method to the task of ASR. It improved
ASR performance in dynamic environments.

For future work, since robot audition usually uses a micro-
phone array for high quality noise reduction, we will extend
our research for a microphone array. Besides, algorithms with
low computational cost will be discussed.
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