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Abstract—This paper proposes a closed-form solution with
reduced bias for differential received signal strength (DRSS)
localization. During the linearization of DRSS measurement
equations, the measurement noise is injected into the measure-
ment data matrix, resulting in a correlation between the measure-
ment noise and measurement data matrix. Existing closed-form
solutions do not consider this correlation, which causes biased
estimation results. The solution proposed here aims to eliminate
the bias by introducing instrument variables (IV), whose role is
to mitigate the correlation arising from linearization. Simulation
results demonstrate the improved performance of the IV-based
estimator over some existing closed-form solutions, in the form
of root-mean-squared errors that are close to the Cramér-Rao
lower bound, and significantly reduced bias, over a wide range
of noise levels.

Index Terms—Differential received signal strength, localiza-
tion, instrumental variable, best linear unbiased estimator

I. INTRODUCTION

Wireless Sensor Networks (WSNs) are regarded as an

important technology in the 21st century in the field of

sensing and telecommunications due to their high-fidelity

sensing capabilities, ease of expansion and scalability [1],

[2]. A large number of inexpensive, versatile sensors can be

networked through wireless links realizing a wide variety of

applications. WSNs are already becoming widely accepted as

a standard technology in areas such as critical infrastructure,

physical security, environmental science and manufacturing.

For instance, in defence they are applied to large-scale acoustic

surveillance and ground target detection [1], [3].

For sensor data to be useful, they need to be tagged

with location information, hence localization is an important

function of WSNs. Common localization methods employ

sensing based on angle of arrival (AOA), time of arrival

(TOA), time difference of arrival (TDOA), received signal

strength (RSS) and differential RSS (DRSS). Compared to

AOA, TOA and TDOA, the RSS-based and DRSS-based

localization techniques do not require additional hardware or

precise clock synchronization for the sensors, so they facil-

itate economical and low-complexity implementations [4]–

[6]. However, RSS-based localization methods strongly rely

on accurate information of the transmitter and environmental

parameters such as transmitter power and propagation loss

factors. In many practical scenarios, even if the environmental

parameters can be precisely determined, the transmitter pa-

rameters are not always available or accurately known because

the manual operation of getting the transmitter parameters is

time consuming if not infeasible [4]. In comparison, using

DRSS eliminates or reduces the need for knowledge of the

transmitter and environmental parameters, and consequently

is more practical [4], [6].

DRSS-based localization involves solving a nonlinear and

nonconvex optimization problem. One of the most popular

solutions is based on the maximum likelihood estimator

(MLE). The MLE is asymptotically efficient and unbiased.

However, the nonlinear and nonconvex property of the MLE

cost function makes it only possible to get the local minimum

and a large estimation error occurs if it converges to a wrong

local minimum point. As a result, a good initial point is

required to reach the global minimum [7]–[9]. In addition,

when the measurement noise is high, the MLE suffers from

the threshold effect, which causes divergence issues [10]. In

[11] many iterative algorithms for the MLE solution are com-

pared, including steepest descent, Gauss-Newton, Levenberg-

Marquardt (LM), and trust region (TR), and the TR method

is recommended. However, when the number of unknown

parameters is large, the search time becomes impractical [7].

Semidefinite Programming (SDP) can be used to convert a

nonconvex MLE problem into a convex optimization problem

using relaxation methods, which leads to a simple and effi-

cient MLE implementation that guarantees the convergence

to the global minimum solution [7], [12]. However, the SDP

relaxation method can only provide a suboptimal solution and

cannot offer the best possible performance in all situations

[13]. An SDP solution of the DRSS optimization problem was

proposed in [6]. It was observed that when the measurement

noise is close to zero, the SDP method could not even give

as good a result as weighted least squares [13]. Pseudolinear

estimation is another popular method of source localization

(see, e.g., [14] and the references therein). Thanks to its

closed-form solution, the advantage of this approach is that it

does not require iterative computation or initialisation, and has

smaller computational complexity than the SDP method and

the MLE [13]. However, pseudolinear estimation techniques

have severe bias problems due to the correlation between

the measurement matrix and the noise vector, which severely

degrades the estimation result [15]. As variants of pseudolinear

estimation, the work in [6] and [16] developed the advanced

best linear unbiased estimator (A-BLUE) and 2-Step Weighted

Least Squares (2-Step WLS) algorithm, respectively, for DRSS
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localization. Even though these solutions have smaller bias

and more accurate estimation results than the originally un-

constrained LS solution, the bias problem is still not avoided.

Our main contribution is to develop a reduced-bias closed-

form solution for DRSS-based localization, that uses the

method of the instrumental variables (IV). The basic principle

of the IV method is eliminating or reducing the correlation

between the noise and the data matrix, by replacing the

linearized data matrix with the IV matrix in the normal

equations [17], [18]. The advantage of the IV method is that

it can achieve asymptotically optimal performance similar to

the MLE at a significantly reduced computational complexity.

The paper is organized as follows. Section II provides the

formal problem definition. Section III briefly discusses existing

closed-form solutions based on the linearization of DRSS

measurements. Section IV proposes our IV-based algorithm,

supported by simulation results given in Section V. The

concluding remarks are made in Section VI.

II. PROBLEM DEFINITION

Given N sensors distributed in a two-dimensional (2D)

plane, whose locations are a priori known, we are concerned

with the problem of localizing a target node of unknown

location in the same 2D plane. Suppose the target node

has unknown location x = [x, y]
ᵀ

, where ᵀ denotes matrix

transpose; and the N known sensors — called anchors — have

known locations si = [xi, yi]
ᵀ

, i = 1, . . . , N . The distance

between the ith sensor and the target node is then

‖di‖2 =‖x− si‖2 =
√
(x− xi)2 + (y − yi)2, (1)

where ‖·‖2 denotes the Euclidean norm. When the target

node broadcasts a signal to the N anchors, each known

sensor records the strength of the signal in the form of a

received signal strength indicator (RSSI). Differential received

signal strength (DRSS) refers to the differences among these

N RSSIs. The principle of DRSS-based localization is to

determine the location of the target node, x, based on the

relationship between the DRSS values and the distances of

the N anchors from the target node, ‖di‖2.

While there are
(
N
2

)
= N(N−1)

2 DRSS values in a network

of N anchors, there are N − 1 basic/independent values, and
(N−1)(N−2)

2 redundant values [4]. To obtain N−1 independent

values, we choose one sensor as the reference sensor, denoted

by s1. If P1,j � Pj−P1 is the DRSS in dBW between s1 and

the jth known sensor, where j ∈ {2, . . . , N}, then the N − 1
DRSS values can be expressed as [6]

P1,j = Gj −G1 − 10γ log10

(‖dj‖2
‖d1‖2

)
+ n1,j ,

= Gj −G1 − 10γ log10

(‖x− sj‖2
‖x− s1‖2

)
+ n1,j ,

(2)

where

• γ is the path loss exponent, which measures the rate

of signal strength decay with distance and is assumed

a priori known;

• Gj and G1 are the sensors’ antenna gains and are

assumed to be equal;

• n1,j = nj−n1 is the difference between the measurement

noises on Pj and P1.

Assuming the received signal strength measurements in dB

are subject to independent, identically distributed (i.i.d.) zero-

mean additive Gaussian noise (log-normal shadowing), i.e.,

ni ∼ N(0, σ2
n), i ∈ {1, . . . , N}, where σ2

n is the RSS noise

variance, the covariance matrix of [n1,2, · · · , n1,N ]ᵀ is given

by

Σ = σ2
n

⎡
⎢⎢⎢⎢⎢⎣

2 1 · · · 1

1
. . .

. . .
...

...
. . .

. . . 1
1 · · · 1 2

⎤
⎥⎥⎥⎥⎥⎦ , (3)

and the target location can be obtained by solving the set

of equations from (2). According to [4], the minimum set of

sensors in theory is four, i.e., N ≥ 4.

III. EXISTING CLOSED-FORM SOLUTIONS

The nonlinear measurement equation (2) can be linearized

into the form [6]

p = Ψφ+ ε, (4)

where

p =

⎡
⎢⎢⎢⎢⎣
‖s1‖22 − ‖s2‖22P

′
1,2

‖s1‖22 − ‖s3‖22P
′
1,3

...

‖s1‖22 − ‖sN‖22P
′
1,N

⎤
⎥⎥⎥⎥⎦ , φ =

[
x
r

]
,

Ψ =

⎡
⎢⎢⎢⎢⎣
2sᵀ1 − 2P

′
1,2s

ᵀ
2 P

′
1,2 − 1

2sᵀ1 − 2P
′
1,3s

ᵀ
3 P

′
1,3 − 1

...
...

2sᵀ1 − 2P
′
1,NsᵀN P

′
1,N − 1

⎤
⎥⎥⎥⎥⎦ , ε =

⎡
⎢⎢⎢⎢⎣
−n

′
1,2‖d1‖22

−n
′
1,3‖d1‖22

...

−n
′
1,N‖d1‖22

⎤
⎥⎥⎥⎥⎦ ,

P
′
1,i � 10

P1,i
5γ , n

′
1,i � 10

n1,i
5γ −1, and r � ‖x‖22 is the auxiliary

variable.

Since n′
1,i is in exponential form, it is difficult to calculate

the covariance of ε. When the shadowing effect is sufficiently

small, n
′
1,i can be approximated by its first-order Taylor series

expansion, which is
n1,i

5γ ln(10). Then the covariance of ε is

given by

Σε ≈ ‖d1‖42
(
ln(10)

5γ

)2

σ2
nΣ (5)

As ‖d1‖42
(

ln(10)
5γ

)2

is a constant and the scaling of Σε does

not influence the solution to (4), Σ can be used instead as the

weighting matrix for solving (4).

A. 2-Step Weighted Least Squares (2-Step WLS)

Lin et al. [16] provided a closed-form solution that consists

of two steps/stages. The first step uses the method of linear
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least squares to estimate the target position x0 and auxiliary

variable r, which are given by

φ̂ = (ΨᵀΣ−1Ψ)−1ΨᵀΣ−1p, (6)

where φ̂ =
[
x̂ᵀ
0 r̂

]ᵀ
, x̂0 is the initial location estimate, and r̂

is the initial estimate of the auxiliary variable. Note r̂ �=‖x̂0‖22
because of estimation errors.

The second step improves the estimation accuracy by con-

sidering the constraint relationship between x0 and r, and

yields

φ̂2 = (Ψᵀ
2Σ

−1
2 Ψ2)

−1Ψᵀ
2Σ

−1
2 p2, (7)

where

p2 =

⎡
⎣x̂2

0

ŷ20
r̂

⎤
⎦ , Ψ2 =

[
I2×2

11×2

]
,

Σ2 = diag(2x, 2y, 1)(ΨᵀΣ−1Ψ)−1 diag(2x, 2y, 1).

Above, x̂0 and ŷ0 are the initial 2-dimensional location esti-

mates. Note that Σ2 is a function of the true target location

(x, y), but since this is unknown, Σ2 is approximated using

the initial estimates x̂0 and ŷ0.

The final location estimate is calculated as

x̂ =

[
sign(x̂0)

√
φ̂2(1) sign(ŷ0)

√
φ̂2(2)

]ᵀ
, (8)

where sign(·) is the signum function.

B. A-BLUE

Hu and Leus [6] provided a closed-form solution called the

A-BLUE method. Firstly, (4) is reformulated as the whitened

model:

Σε
− 1

2p = Σε
− 1

2Ψφ+Σε
− 1

2 ε,

⇒ (ΓΓᵀ)−1/2p = (ΓΓᵀ)−1/2Ψφ+ (ΓΓᵀ)−1/2ε,

⇒ pw = Ψwφ+ εw,

(9)

where

Γ ≈ [−1(N−1)×1 IN−1

]
N−1×N

,

Σε ≈ ‖d1‖42
(
ln(10)

5γ

)2

σ2
nΓΓ

ᵀ, Ψw = (ΓΓᵀ)−1/2Ψ,

pw = (ΓΓᵀ)−1/2p, εw = (ΓΓᵀ)−1/2ε.

The solution to (9) is given by

φ̂u−blue = (Ψᵀ
wΨw)

−1Ψᵀ
wpw, (10)

where φ̂u−blue =
[
x̂ᵀ
u−blue r̂

]ᵀ
, x̂u−blue is the initial

location estimate, and r̂ is the initial estimate of the auxiliary

variable. In [6] this solution was named the unconstrained best
linear unbiased estimator (U-BLUE).

To keep the constraint among the entries of φ̂u−blue, in [6]

the advanced best linear unbiased estimator (A-BLUE) was

proposed:

x̂a−blue = x̂u−blue − (Ψᵀ
2wΨ

ᵀ
wΨwΨ2w)

−1Ψᵀ
2wΨ

ᵀ
wΨwp2,

(11)

where

Ψ2w =

[
I2

2x̂ᵀ
u−blue

]
, p2 =

[
02×1

‖x̂u−blue‖22 − r̂

]
. (12)

IV. PROPOSED SOLUTION FOR REDUCING BIAS USING

INSTRUMENTAL VARIABLES

The weighted least squares solution in (6) is biased because

the matrix Ψ is injected with measurement noise n1,j during

the linearization process, which leads to a correlation between

the data matrix and measurement noise vector [19].

An estimator is unbiased if E{φ̂} = φ, or equivalently

E{φ̂− φ} = 0, where E{·} denotes the expectation operator

[20]. Using (6) as the estimator for φ in (4), we have

E{φ̂− φ} = E{(ΨᵀΣ−1Ψ)−1ΨᵀΣ−1ε}. (13)

Under a mild condition with sufficiently large number of mea-

surements and/or small measurement noise, using Slutsky’s

theorem [21], (13) can be approximated as

E{φ̂− φ} ≈ E{ΨᵀΣ−1Ψ}−1
E{ΨᵀΣ−1ε}. (14)

If Ψ is statistically independent of ε (thus E{ΨᵀΣ−1ε} =
E{Ψ}ᵀΣ−1

E{ε}) and the noise is zero mean, i.e., E{ε} = 0,

we have E{φ̂−φ} ≈ 0 and the estimator (6) is approximately

unbiased.

However, Ψ is in fact not independent of ε because Ψ
is constructed from noisy DRSS measurements (see (4)). For

this reason, there exists a correlation between Ψ and ε, thus

leading to E{ΨᵀΣ−1ε} �= 0. As a result, we have

E{φ̂− φ} �= 0, (15)

and the estimator (6) is biased. Consequently, this makes the

2-Step WLS estimator biased. Similarly, the A-BLUE method

can be shown to be biased due to the correlation between Ψw

and εw.

To overcome this bias problem, we now propose a new

method by introducing an IV matrix F into the 2-Step

WLS method, where F is strongly correlated with Ψ and

approximately uncorrelated with ε, as desired. Specifically, the

weighted least-squares solution in (6) is modified as

φ̂
IV

= (FᵀΣ−1Ψ)−1FᵀΣ−1p. (16)

Provided that the IV matrix F is selected such that

E

{
FᵀΣ−1Ψ

N−1

}
is nonsingular, and E

{
FᵀΣ−1ε
N−1

}
= 0 as N →

∞, we have

E

{
φ̂

IV − φ

}
= E

{
FᵀΣ−1Ψ

N − 1

}−1

E

{
FᵀΣ−1ε

N − 1

}
= 0

(17)

as N → ∞, i.e., φ̂
IV

in (16) becomes asymptotically

unbiased [17], [18]. Letting φ̂
IV

= [x̂IV ŷIV r̂IV ]ᵀ,

the final location estimate is obtained by replacing x̂0,

ŷ0, r̂ in (7) with x̂IV , ŷIV , r̂IV , and performing the

rest of the 2-Step WLS from (7) onwards with Σ2 =
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Fig. 1: Sensor coordinates in a 50 m × 50 m area.
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Fig. 2: Average signal-to-noise ratio versus σ when γ = 4 and

N = 10.

diag(2x, 2y, 1)(FᵀΣ−1Ψ)−1FᵀΣ−1F(ΨᵀΣ−1F)−1 diag(2x,
2y, 1).

The optimal IV construction is to use the noise-free version

of Ψ which is not available since it is a function of the

unknown true target position x. Following the approach in

[22], we construct and utilize a suboptimal IV matrix by

approximating the noise-free version of Ψ using the initial

location estimate x̂0 obtained from (6):

F =

⎡
⎢⎢⎢⎢⎣
2sᵀ1 − 2P IV ′

1,2 sᵀ2 P IV ′
1,2 − 1

2sᵀ1 − 2P IV ′
1,3 sᵀ3 P IV ′

1,3 − 1
...

...

2sᵀ1 − 2P IV ′
1,N sᵀN P IV ′

1,N − 1

⎤
⎥⎥⎥⎥⎦ , (18)

where P IV ′
1,i = 10

PIV
1,i
5γ and P IV

1,i = −10γ log10

(
‖x̂0−si‖2

‖x̂0−s1‖2

)
.

Although developed based on the framework of asymptoti-

cally unbiased IV estimation, the proposed method is capable

of significantly removing estimation bias even for a finite and

small number of anchors N , as demonstrated in Section V.

V. SIMULATION RESULTS

MATLAB-based Monte Carlo simulations were carried out

to compare the proposed IV-based estimator with the MLE,

2-Step WLS [16], U-BLUE and A-BLUE [6], in terms of the

root-mean-squared error (RMSE) and bias.

Each Monte Carlo simulation consists of 50,000 runs, with

the sensor noises randomized in each run. Network topology is

fixed, consisting of ten anchors and one target sensor deployed

in a 50 m × 50 m area (see Fig. 1). The path loss exponent

is assumed known and set to γ = 4. The indoor acceptable
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Fig. 3: RMSE versus σ when γ = 4 and N = 10.

-10 -8 -6 -4 -2 0 2 4 6
Measurement noise [dBW]

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

bi
as

[m
]

MLE
Proposed
U-BLUE
2-Step-WLS
A-BLUE

Fig. 4: Bias versus σ when γ = 4 and N = 10.

range of noise is set at σ ∈ [−10, 7] dBW following [23].

The average signal-to-noise (SNR) ratio corresponding to σ
is given by SNRave =

∑N
i=2

P1,i

(N−1)σ2
n

. Fig. 2 shows that the

simulated average SNR ratios are realistic.

Fig. 3 shows the RMSE versus noise. It is seen that

the U-BLUE method cannot attain the CRLB (see [16] for

the derivation of the CRLB for DRSS localization). This is

because the U-BLUE method ignores the relation between the

location estimate and the auxiliary variable. The 2-Step WLS

and A-BLUE are able to approach the CRLB when noise is

below 0 dBW, but both estimators start to deviate significantly

from the CRLB when the noise exceeds 0 dBW. The MLE on

the other hand exhibits an RMSE performance very close to

the CRLB for the entire noise range, but it does not provide a

closed-form solution, is computationally expensive, and can be

vulnerable to divergence problems. In contrast, the proposed

IV-based estimator produces smaller RMSE than the 2-Step

WLS and A-BLUE especially for large σ, almost achieving

the CRLB.

Fig. 4 shows the bias versus noise. The U-BLUE, 2-Step

WLS and A-BLUE all suffer from severe bias problems for

noise larger than −6 dBW. The proposed IV based estimator

exhibits the best bias performance even outperforming the

MLE for large noise.

Figs. 5–6 show the performance metrics versus the number

of sensors (N ) when γ = 4 and σ = 4 dBW. For the simulated
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geometry the IV based estimator achieves a good performance

if 6 or more sensors are used.

VI. CONCLUSION

Using DRSS measurements to perform localization in wire-

less sensor networks is promising because it obviates the need

to determine many transmitter and environmental parameters,

and it can be formulated as a linear estimation problem.

However, existing solutions are either not closed-form, may

diverge, or suffer from significant bias problems due to the

injection of noise into the data matrix by the linearization

process. This paper proposes a linear estimator for DRSS-

based localization by enhancing the 2-Step WLS estimator

with an IV matrix, whose function is to eliminate the corre-

lation between the data matrix and the measurement noise,

which is the root cause of bias. Simulation results show that

the proposed IV-based estimator outperforms the original 2-

Step WLS, as well as the U-BLUE and A-BLUE estimators

over a wide range of noise levels, producing very small bias

and an RMSE performance close to the CRLB. Furthermore,

the proposed estimator has smaller computational complexity

than the MLE, and does not suffer from divergence problems.
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