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Abstract—A two-stage hybrid method based on the machine
learning approach is proposed for source localization using time
of arrival (ToA) measurements in a mixed line of sight (LOS) and
non-line of sight (NLOS) environment. The first stage applies an
artificial neural network (NN) to detect the NLOS measurements
that are outliers and the second stage passes the identified LOS
measurements to an inverse weighted self-organizing network
(IWSON) for determining the source location. The NN NLOS
detector is able to take care of a variable number of NLOS
measurements while the IWSON handles naturally a variable
number of inputs and yields a solution without explicitly solving
the nonlinear estimation problem. Simulations validate the good
performance of the system with a different number of NLOS
measurements. It provides a solution in reaching the Cramèr-Rao
lower bound (CRLB) accuracy under a harsh multipath noisy
environment, except over the small error region where it can act
as an initialization for the iterative MLE to refine accuracy if
necessary.

Index Terms—ToA, localization, neural network, outlier, cor-
rect detection, false alarm.

I. INTRODUCTION

Source localization in a multipath environment has attracted

the attention of many researchers over the years. Non-Line of

Sight (NLOS) observation, referring to outlier in this work,

may occur due to severe environmental conditions [1], sensor

failure [2], channel impairments [3], or a malicious attack

[4], etc. These measurements are statistically inconsistent with

the normal line of sight (LOS) data, and as such, often lead

to significant deterioration in the localization performance

[5]–[9]. Analyzing the data to identify the NLOS measure-

ments becomes essential in maintaining an acceptable level of

localization performance. Traditional localization with LOS

measurements uses explicit algebraic solution that works well

only under low noise condition, or iterative solution that

yields good result only when the initialization is near the

actual. This paper took a pure and hybrid machine learning

approach, in particular using an artificial neural network (NN)

for NLOS detection and a self-organizing network for source

localization in an environment in which NLOS measurements

could appear.

Artificial NNs have been successfully adopted in solving

highly nonlinear problems in pattern recognition, prediction,
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system identification, nonlinear processing, fault tolerance,

feature generalization, and control [10]–[13]. Related to outlier

identification, [14] proposed an online technique based on

hyper-ellipsoid one-class support vector machine (SVM). It

used the spatio-temporal correlation in the sensor data to

identify outliers and showed that the technique gives better

performance than the spherical SVM. [15] developed a non-

parametric unsupervised outlier detection algorithm for wire-

less sensor network (WSN) based on single-hop communi-

cation. In contrast to detecting outlier, [16] employed a NN

to estimate the states of an outlier-free system and achieved

fault detection by comparing the observed states with those

expected from the outlier-free system. Recently, [17] suggested

a back-propagation (BP) NN model for improving a time

difference of arrival (TDOA) algorithm in NLOS environment

by utilizing a variable gradient training algorithm. Related to

estimation, [18] proposed a k-means clustering NN to find the

extent of overlap among the users in a community for social

network application. [19] proposed a cloud computing-based

self-organized localization (SOL) system to address the mis-

estimation problem that may occur in a mixture space and to

decrease the amount of inter-node communication exchanges.

These prior research for machine learning approaches consider

the outlier detection and the localization problems separately.

In this work, we propose a unified hybrid approach as

shown in Fig. 1 for the source localization problem using

time of arrival (ToA) measurements, where outliers resulting

from NLOS propagation may occur. The suggested approach is

based on the mapping technique that maximizes the objective

score when learning environments are reinforced. First, we

propose the features to be used in conjunction with a super-

vised NN for outlier detection. Second, an inverse weight self-

organizing network (IWSON) is developed to accommodate

seamlessly a variable number of input elements and produce

an accurate source location estimate. The proposed method

integrates the two mapping techniques together without the

limitations caused by degenerated sensor geometry, high com-

putational complexity, and the need for additional information

about the statistics or the number of outliers.

The presentation of this work concentrates on the 2-D

scenario, the proposed method can be applied directly for the

3-D case as well. Following the introduction, we next describe
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the problem in Section II. Section III presents the proposed

hybrid two stage localization method. Section IV gives the

simulation results for supporting the proposed system and we

draw the conclusion in Section V. In the paper, bold lower

case letter denotes column vector and bold upper case letter

represents matrix. a(i) is the i-th element of a. 1N is a vector

of unity having length N . ‖ • ‖ is the Euclidean norm and �
represents the operation of element by element multiplication.

Fig. 1. Block diagram of the proposed hybrid mapping method for source

localization.

II. PROBLEM FORMULATION

We are given a 2-D sensor network that has M sensors

placed at si ∈ R2, where i = 1, 2, · · ·,M . Each of them is

able to obtain ToA measurement through signal time stamping

and/or message exchanges with an object at unknown location

uo = [x, y]T . Some of the measurements could be experi-

encing NLOS effect and become outliers. We shall use k to

represent the number of outliers, where k is not known.

The range (equivalent to ToA) measurement between the

object and the i-th sensor is modeled as

mi = ‖uo − si‖+ γi , i = 1, 2, . . . ,M (1)

where γi is the measurement noise that is IID and Gaussian

distributed. We model the outlier error through the distribution

of γi. For measurement from direct LOS, γi ∼ N (0, σ2).
For outlier resulted from NLOS, γi ∼ N (μNL, σ

2
NL), where

μNL > 0 and σ2
NL > σ2. We do not expect σ2, μNL, and

σ2
NL are known. The collection of all measurements is m =

[m1,m2, . . . ,mM ]T .

We would like to obtain the object location uo, using the

M range measurements where an unknown number of them

are outliers. We next present the proposed method to solve

this localization problem.

III. PROPOSED HYBRID METHOD

The proposed method has two stages as shown in Fig. 1.

A. First Stage

The first stage extracts a set of features and uses a super-

vised NN for the detection of outliers in the M range measure-

ments. During training, the ability of an NN converging toward

the desired output (correct state) depends on the availability of

sufficient information presented to it that can correlate well to

the desired output state [20]. Deriving the meaningful features

is crucial for the effectiveness of the NN outlier detector.

The features are devised based on the following concept.

The Maximum Likelihood (ML) location estimate from a

number of LOS measurements, say ǔ, is expected to be near

the true value. Indeed, f = (ǔ−uo)TQ−1(ǔ−uo) follows the

central χ2 distribution with 2 degrees of freedom according to

the LOS noise model [21], where Q denotes the CRLB of the

location estimate. On the other hand, if the estimate ǔ is from

a set of range measurements that has one or more outliers, it

will deviate significantly from the true value; the resulting f
will not follow the central χ2 distribution and will be large.

Among the M ToAs, the number of possible subsets of

measurements that can give a location estimate is

L =

M∑
i=3

(
M

i

)
, (2)

considering that at least 3 range measurements are needed to

yield a unique estimate in 2-D. For each subset of measure-

ments, we can obtain the location estimate and the residual

square error statisticf . A small value of f indicates the subset

does not have outliers and has otherwise.

The exact f value cannot be evaluated since uo and Q are

not known. We shall use a reference solution to approximate

uo. Inspired by [21], [22], we define the reference (conser-

vative) solution ū as the best estimate among those from

using any 3 among the M measurements. Using the minimum

number of measurements has the highest probability of having

the reference solution not from outlier measurement(s). We

mean here the best is the one that yields the smallest trace

of the CRLB with the noise power σ2 ignored, with the true

value uo in the CRLB replaced by the estimate. The CRLB

matrix for ToA positioning with 3 LOS measurements from

sensors i, j, k is simply

CRLB(uo) = σ2
∑

p={i,j,k}

(uo − sp)(u
o − sp)

T

‖uo − sp‖2 . (3)

The trace of the CRLB provides a good measure to indicate

the accuracy of a solution estimate. σ2 is not known but it is

irrelevant to select the good solution. As for Q, it is logical to

replace it by the CRLB matrix, with the true source location

replaced by the estimate.

For each subset of measurements, we can now form

f(h) =
[ǔh(1)− ū(1)]2

cxx,h
+

[ǔh(2)− ū(2)]2

cyy,h
(4)

for h = 1, 2, . . . , L and h �= h̄, where h̄ is the mea-

surement subset that gives the reference solution. ǔh is the

solution obtained by measurement subset number h using

a typical ToA localization algorithm [22] that has the ML

accuracy. cxx,h and cyy,h are the (1, 1) and (2, 2) diagonal

elements of CRLB(ǔh)/σ
2. Note that we ignore the off-

diagonal components of the CRLB when forming f(h) in (4).

f = [f(1), f(2), . . . , f(L)]T gives L features to the NN.

The feature vector for the NN outlier detection is

[fT ,mT ]T , as the original measurements may contain useful

information. The NN output is represented by the length M
indication vector v, whose elements are either 1 or 0. Having

a value 1 in element j indicates the j-th element is an outlier.

A number of experiments have been performed with various

training algorithms to determine the structure of the NN by

maximizing the percentage of correct classification of outliers

while minimizing the amount of false detection. The structure

is shown in Fig. 2. It has four layers, one input, two hidden,
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Fig. 2. The neural network architecture for outlier detection.

and one output layers. The input layer has L+M nodes and

output layer M nodes. Each of the two hidden layers has

75 neurons. Among the algorithms examined, we select the

Bayesian Regularization (BR) with an adaptive learning rate

as the training algorithm. BR describes a good generalization

model, avoids costly cross-validation to solve the overfitting

problem and explores complex model by effectively penalizing

the intricate architecture [23], [24].

During training, a set of samples are generated according to

the known sensor positions and a random sampling over the

area of coverage for creating the location of the object. The

measurements for the training samples are synthesized using

(1), with σ2 and σ2
NL set to 10−5 and 4σ2, respectively. The

training data contains equal proportion of the measurements

of 0, 1, . . ., up to the maximum number of outliers expected.

The outliers are simulated according to Section IV.

B. Second Stage

The second stage removes the outlier measurements and

uses only the detected LOS measurements to obtain the object

location. This is accomplished by using the IWSON that has

the benefit for accepting a variable number of inputs for

localization.

The traditional self-organized map (SOM) [25] computes

the weight matrices using a training algorithm started with

initial random weights. We developed a systematic approach

based on the structure of SOM to construct the weight matrices

from the clean synthetic measurements having the object at

each of a number of hypothesized positions. The hypothe-

sized positions are random locations generated by dividing

uniformly the area of interests. The IWSON algorithm for

localization has two phases summarized as follows:

Phase1: Setting Up

This phase is being done offline before localization.

1) Generate Ny × Nx hypothesized positions

pα,β that are chosen randomly over the region

[xmin, xmax]×[ymin, ymax] with uniform distribution

for the x- and y-coordinates, where α = 1, · · · , Nx and

β = 1, · · · , Ny .

2) Compute the clean synthetic measurements (ranges) for

all the hypothesized positions with respect to each sensor

position
dα,β,i = ||pα,β − si|| (5)

for α = 1, · · · , Nx, β = 1, · · · , Ny , and i =
1, 2, . . . ,M .

3) Form M weighting matrices, one for each sensor posi-

tion having size Ny ×Nx given by Wi = [dα,β,i] .
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Fig. 3. Performance comparison of IWSON and SOM with the CRLB

accuracy.

Phase2: Determining Location
Let m̃ be the identified LOS measurements found from

the first stage with the corresponding sensors located

at {si1 , si2 , . . . , si
˜M
}, where ik ∈ {1, 2, . . . ,M}, k =

1, 2, . . . , M̃ and M̃ is the length of m̃. The location solution

û is obtained as follows.

1) Evaluate the matrix of total error measure by computing

the �2-norm of each element in the identified LOS

measurement vector m̃ with each of the elements in

Wik by

E =

˜M∑
k=1

(
mik1Ny1

T
Nx

−Wik

)� (
mik1Ny1

T
Nx

−Wik

)
(6)

2) Find the first q smallest elements of E, denoted by εn,

and identify their corresponding hypothesized positions

ûn based on the element indexes, where n = 1, · · · , q.

3) Obtain the object position estimate û by:

û =

∑q
n=1 ε−1

n × ûn∑q
n=1 ε−1

n

. (7)

Compared with the traditional SOM algorithm, IWSON

has lower computational complexity and there is no need to

retrain to take into account the variable number of inputs (the

identified LOS measurements from Stage 1). The grid size

of the network (Ny × Nx) and the number of q are selected

according to the required accuracy of the solution and the

acceptable level of the computational complexity.
To examine the performance difference between IWSON

and SOM, we generate a grid with a resolution of 4 uniformly

distributed points over an area of [−100, 100]× [−100, 100].
The sensor positions were set the same as in [21] after being

scaled down by a factor of 61. The weight matrices of IWSON

are generated using the proposed Phase1 IWSON algorithm

while the initial weight matrices for SOM are updated using

competitive learning algorithm. The parameter q = 4 for

IWSON. Fifty trials each with the object at a different location

chosen from the grid were conducted and the results are plotted

as shown in Fig. 3. The number of ensemble runs in each trial

is 100. IWSON has better performance than SOM. Both have

limited performance in the small noise region that is limited

by the resolution of the grid size , but IWSON remains to be

better. In this simulation, IWSON is about three times faster

than SON.
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TABLE I
THE SENSOR (RECEIVER) POSITIONS

s1 s2 s3 s4 s5 s6 s7
675
1000

-675
1000

-1000
-165

-500
-835

500
-1000

1000
0

0
835

IV. PERFORMANCE EVALUATION

We use a mix of two Gaussian distributions [7], [9] to

simulate the measurement noise γi in (1),

p(γi) = (1− ρ)N(0, σ2) + ρN(μNL, σ
2
NL) . (8)

In (8), ρ is the outlier probability. σ2 is the noise power of

LOS measurements, and μNL > 0 and σ2
NL are the mean

and variance of the noise in NLOS outlier measurements.

In simulating outlier, we set μNL = (1 + rand)× true

measurement value, where rand is sampled from U(0, 1), and

σNL = 2σ. In an ensemble, each of the M measurements has

a probability of ρ being an outlier. The number of ensemble

runs is 100.

A dataset with 2000 possible object locations selected

randomly in a square area of [−2000, 2000]× [−2000, 2000]
was created to train the NN. The sensor positions are fixed and

summarized in Table I. The number of epochs that is used in

the training phase is 42. The NN was trained with 0 and up to

3 outliers. A grid resolution of (40/3) and q = 4 have been

applied for the IWSON in the second stage.

The performance of the proposed approach is evaluated

in terms of the root of mean square error (RMSE) as the

noise power varies. The accuracy of the IWSON solution,

and its further refinement using the Gauss-Newton iterative

MLE is compared with the Riba method [26] and the CRLB.

In addition to the localization accuracy, we also provide the

percentage of correct detection (PCD) and the percentage of

false alarm (PFD) for outlier detection from Stage 1 that is

defined as [9], [27]

PCD =

∑L
l Outliers detected in ensemble l

Total number of ensemble runs L
× 100%, (9)

PFD =

∑L
l At least one falsely detected in ensemble l

Total number of ensemble runs L
× 100% (10)

We consider two possible object locations. One is inside

the sensor area at uo = [200 100]T and the other outside at

uo = [1500 1400]T . Among the seven ToA measurements,

there can be 0, 1, 2, and 3 outliers, which corresponds to ρ
equal to 0, 1/7, 2/7 and 3/7. Only the results of 1 and 3 outliers

are presented for conciseness.

The performance of the proposed system is shown in Fig.

4 and Fig. 5 for the object inside and outside the sensor

area. The performance is very poor without detecting and

removing the outliers. The proposed IWSON solution behaves

well and outperforms the Riba method except at low noise

level (σ2 = 1) due to the limit in grid resolution. It also

achieves the CRLB accuracy until the noise power reaches

around 105. Further refinement by the iterative MLE improves

performance only at very low noise level where the accuracy

is limited by the IWSON grid resolution. The performance of

the proposed solution is consistent for the two object locations.

Figs. 6-7 are the results of the three outlier case. The false

detection probability is lower than that for the one outlier

case because we have more outliers and hence less chance of

having false detection. In any case, the proposed NN outlier

detector maintains nearly 100% correct detection and yields

the CRLB performance even without MLE refinement until

the thresholding effect occurs. The results for the 0 and 2

outlier cases are similar. The proposed method provides stable

and consistent performance regardless the number of outliers

present and is insensitive to the object location.

V. CONCLUSION

A unified hybrid mapping approach for robust object lo-

calization in a mix of LOS and NLOS(outlier) environment

is proposed, where the number of outliers and their statistics

are not known. The first stage uses a NN for the detection of

NLOS measurements and the second stage applies the IWSON

for the estimation of the object location. In the first stage,

we derived an effective feature vector for the NN detector,

making it capable of handling the presence of an unknown

number of outliers without requiring their statistics. The IW-

SON developed in the second stage has the benefit of taking

care of a variable number of identified LOS measurements

from the first stage and providing an accurate object location

estimate. The resulting positioning accuracy is able to reach

the CRLB performance, unless the noise level is low where

the accuracy is limited by the IWSON grid resolution. The

proposed system is more effective if the NLOS measurements

have more deviation from the actual values. We used ToA

measurements and the 2-D scenario for illustration, and the

proposed method can be extended directly for other types of

measurements and the 3-D case. In the future work, we plan

to investigate the generalization ability of this approach when

the environment can be varying.
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