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Abstract—We extend static scheduling of parallelizable tasks
to machines with multiple core types, taking differences in per-
formance and power consumption due to task type into account.
Next to energy minimization for given deadline, i.e. for given
throughput requirement, we consider makespan minimization
for given energy or average power budgets. We evaluate our
approach by comparing schedules of synthetic task sets for
big.LITTLE with other schedulers from literature. We achieve
an improvement of up to 33%.

Index Terms—static scheduling, energy-efficient execution,
streaming tasks, heterogeneous platform

I. INTRODUCTION

Signal processing applications are often implemented by a
set of streaming tasks. Each task does a specific job, input
tasks take input and follow-up tasks are provided with results
from predecessor tasks. All tasks are activated repeatedly, as
the input data repeatedly arrives, i.e. forms a data stream.
Consider for example an image processing algorithm where
an initial task enhances sharpness of an input image, while
two follow-up tasks apply different filtering algorithms to this
image, and a final task combines the filtered variants into one
image again. As data streams typically are to be processed with
a given throughput requirement such as number of processed
images per second, this leads to a maximum time span for
every execution unit for executing its assigned tasks once.

In order to fulfill the throughput requirement, it might be
necessary to parallelize tasks to reduce their runtime. This is
especially true for low task count, so that a multicore processor
could not be completely filled if the tasks remained sequential.

At the same time, energy consumption has become a
first-class design constraint. The tasks should be run in a
manner that, while meeting the deadline requirement, they
consume as little energy as possible per round. Given the
throughput requirement, this also incurs a minimum average
power consumption. This is especially important if a higher
power consumption would necessitate changes to the device
itself, such as adding an opening with a fan to the chassis,
which in turn might mean higher operational and maintenance
cost. Thus, an additional goal might also be to maximize
throughput, i.e. minimize makespan of one scheduling round,
for a given (average) power budget. Controlling power and
energy consumption can be achieved by running the tasks at a

frequency (resp., frequency-voltage) level as low as possible.
If task runtimes are long enough, it is even possible to switch
the frequency level between tasks without noticeable overhead.

As a device might have to execute only one or few fixed
applications throughout its lifetime, and execution of this ap-
plication comprises many rounds of task invocation, it pays off
to compute an optimized static schedule. Crown scheduling [1]
is a static scheduling approach for this situation, i.e. it provides
a static schedule to execute a set of tasks on a parallel platform
until a deadline, parallelizes the tasks if necessary, and scales
the frequencies for energy efficiency. Crown scheduling as-
sumes a homogeneous platform. Current platforms are often
heterogeneous, e.g. ARM’s big.LITTLE platform comprises
two types of cores with identical instruction set architecture
but different speed and power consumption profiles. Moreover,
the behavior on different core types, e.g. how much faster a
task is on a big core compared to execution on a LITTLE
core, or the concrete power consumption of that core while
executing the task, depends on the instruction mix. [2] char-
acterize tasks into a small number of categories and provide
speed and power profiles for big.LITTLE architectures.

We try to bring both worlds together and present a schedul-
ing algorithm based on crown scheduling for heterogeneous
platforms and tasks with task types. The scheduling algorithm
is based on solving an integer linear program (ILP) or mixed
integer linear program (MILP), depending on optimization
goal. As the number of tasks for a signal processing applica-
tion is often moderate, this is no disadvantage, as scheduling
problems for task sets of moderate size can still be optimally
solved. As the scheduling is only done once before deploying
the application, the savings during execution of the application
— possibly for years and possibly in thousands of installations
— far outweigh the energy invested in the scheduling. Our
contributions thus comprise:
• We present a static scheduling algorithm for a set of tasks

on a heterogeneous platform with frequency scaling, to
meet a deadline and minimize energy consumption, given
that the tasks are of different types and thus have different
power and speed profiles on this platform.

• We extend the scheduling algorithm to situations where
an energy budget per round or an average power budget
is given, and the makespan for this round is minimized.
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Fig. 1. Left: A streaming task graph. Right: The steady state of the streaming
pipeline (rectangle) consists of n independent (instances of) streaming tasks.

• We perform experiments with profiles of ARM’s
big.LITTLE architecture that have been tested to be
accurate. We compare our results with Crown Scheduling,
already extended for a heterogeneous architecture but
without task types, and with the scheduling from [2],
where tasks remain sequential. We achieve improvements
of up to 33%. To do so, we extend the original Crown
Scheduling MILP, and modify both MILPs to address the
additional target functions.

The remainder of this paper is organized as follows. In
Section II, we provide technical background information and
discuss related work. In Section III we present the hetero-
geneous crown scheduling algorithm for tasks with types,
and extend this algorithm to situations where a fixed energy
budget per round or a fixed average power budget is given
and the makespan is minimized. In Section IV we report on
experiments to evaluate our scheduling algorithm. In Section V
we give our conclusions and an outlook to future work.

II. BACKGROUND AND RELATED WORK

A. Scheduling Streaming Applications

Streaming computations (such as Kahn Process Networks
[3]) model signal processing applications [4] by a graph of
streaming tasks that repeatedly process and forward packets of
data flowing along buffered communication channels. Applied
to a large input data stream, pipelining the task executions for
subsequent data results in a cyclically executed steady-state
pattern, also referred to as a round, where task instances are
independent (see Fig. 1). A required minimum throughput thus
results in a deadline for the round on every execution unit.

A static schedule is computed once prior to execution, which
tells each processor the list of tasks it has to execute in
one round. The execution is done by a user-level scheduler,
where each core simply calls its assigned tasks in round-
robin order. A barrier per round might be necessary, but when
tasks are parallelized the synchronization of cores happens
implicitly. As the tasks are executed on a multicore platform,
communication between tasks is via the shared memory, and
thus fast. We do not model the dependencies between tasks
explicitly, so it might happenthat processing one input data
packet might take t rounds in the worst case, where t is the
maximum number of nodes on a path through the graph, e.g.
t = 3 in Fig. 1. However, usually part of the dependencies
can be covered even within one round, if dependent tasks
are scheduled later than their predecessors, thus reducing
processing latency without affecting throughput.

B. Speed and Energy on Heterogeneous Platforms

The execution speed of a task on a processor core depends
on many factors. Most prominent among them is the oper-
ating frequency of the core, as it determines the length of
one processor cycle. The microarchitecture of the core also
influences the runtime of a task, because it determines the
number of cycles needed for each instruction, and how the
instructions can be overlapped by pipelining or superscalar
execution. For two cores with identical instruction set archi-
tectures but different microarchitectures, the same code will
lead to different power consumptions or different runtimes
or both. While the “stronger” core typically leads to shorter
runtime, it often cannot be predicted which core leads to lower
energy consumption. ARMs big.LITTLE1 is an example for
such a heterogeneous architecture. It comprises multiple cores
with identical instruction set architecture but with different
microarchitecture (e.g. A7 and A15). LITTLE cores have a
simpler architecture but are less power-hungry than big cores.

A core’s power consumption depends on its operating
frequency, if we assume that the supply voltage is always set at
the minimum possible value and the temperature is controlled,
on the instructions that are executed, and on the structure of the
core’s execution units to execute these instructions. Assuming
that a task’s instruction mix is stable over its execution, i.e. the
power consumption is stable, too, then the energy to execute
the task is the product of power consumption and execution
time. Thus, there are complex relationships between execution
time, power consumption and energy consumption for a task.
It may e.g. not be energy-efficient to execute a task on a
low frequency instead of a higher, as the reduction in power
consumption may not make up for the increase in runtime.

C. Related Work

Pruhs et al. [5] provide a static scheduler to minimize
makespan for a task set on a parallel machine with frequency
scaling for a given energy budget. Their tasks are sequential,
have no task types, have dependencies, the frequency f can
be scaled to an arbitrary continuous value, the power function
is restricted to fα, and the machine is homogeneous.

Melot et al. [1] and Xu et al. [6] propose static schedulers
to minimize energy consumption for a task set on a parallel
machine with discrete frequency levels, given a deadline.
While their tasks are parallelizable, they do not have task
types, and the machine is homogeneous. Also, they do not
address energy or power budgets.

Holmbacka and Keller [2] investigate power profiles of
ARM big.LITTLE for tasks of different types, and provide a
static scheduling for task sets given a deadline. However, their
tasks are sequential, and their scheduler enumerates solutions.
Also, they do not address power or energy budgets.

Kuang and Bhuyan [7] optimize latency and throughput
for network packet processing under a given power budget.
However, their tasks are sequential, have no task types, have
dependencies, and use a given mapping of tasks to processors.

1https://developer.arm.com/technologies/big-little
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Fig. 2. A binary crown for p = 8 cores of 2 different types, where the core
types are given by the color coding (orange = A15-cores (big), green = A7-
cores (LITTLE)). The boldface numbers 1, . . . , 15 show the processor group
indices of the crown.

Sarood et al. [8] present a dynamic scheduler for HPC
cluster to increase performance under a strict power budget. In
contrast, we target static schedules and average power budget.

Zahaf et al. [9] present a static scheduler for task sets of
different task types on a heterogeneous parallel machine, in
particular ARM big.LITTLE. In contrast to our work, their
tasks have individual deadlines and periods, they use a non-
linear program, and do not address energy or power budgets.

III. SCHEDULING FOR ENERGY AND POWER EFFICIENCY

A. Original Crown Scheduler

Crown scheduling considers a set of n independent, paral-
lelizable (i.e. moldable) tasks tj , each with given workload
τj (given in number of cycles) and parallel efficiency ej(wj)
when executing the task on wj ≤Wj processors, where Wj is
the maximum degree (width) of parallelism. The runtime (in
sec.) for a task executed at frequency f (cycles per second) is

τj
f · wj · ej(wj)

.

The machine to execute the task set has p cores, each
scalable to a finite number s of discrete frequency levels fk.
For each frequency level, the power consumption of the core
Pow(fk) is known. Thus, the energy consumption of a task
running at fk is the product of runtime, power consumption
per core and the number of cores

τj
fk · wj · ej(wj)

· Pow(fk) · wj =
τj · Pow(fk)
fk · ej(wj)

.

Each task is allocated a width, mapped to a set of cores,
and assigned an operating frequency. This is to be done such
that all tasks are executed until a given deadline M is reached
and that the energy consumption is minimized.

To simplify the scheduling complexity, the number of pos-
sible allocations and mappings is greatly reduced. A task can
only be allocated a width that is a power of 2. The mapping
of a task to a set of cores can only be done according to
the hierarchy of core groups i, each of size pi, as depicted
in Fig. 2. Thus, there are only 2p − 1 processor groups for
mapping: one with p cores, two with p/2 cores, and so on.

Integrated Crown Scheduling considers allocation, mapping
and frequency together as an optimization problem in an
integer linear program (ILP). The ILP uses ns(2p− 1) binary
decision variables xi,j,k where xi,j,k = 1 if task j is mapped

to processor group i at frequency level fk. Two constraints to
be fulfilled are that each task j is only mapped once, i.e.

∀j :
∑
i,k

xi,j,k = 1 (1)

and that no task’s mapping supersedes its maximum width:

∀j :
∑

i:pi>Wj

∑
k

xi,j,k = 0 . (2)

The remaining constraints and target function are presented
when adapting Crown scheduling to a heterogeneous platform.

B. Heterogeneous and Task type-Aware Crown Scheduling
To fit Crown scheduling to a heterogeneous multicore ma-

chine, we assume that the heterogeneous machine consists of
2q core types, each with p/2q cores. All processor groups that
span more than one type of core remain empty, as each task is
only parallelized on one type of core. These are groups i = 1
to 2q − 1, so that only groups of size at most p/2q remain. This
can e.g. be achieved by restricting the task widths wi ≤ p/2q .
In Fig. 2, 2q = 2 core types are present, so that group i = 1
will remain empty by setting the maximum widths to at most
4. The processor groups in Crown scheduling can be adapted
to architectures with numbers of core types that are no power
of two, and different core counts for the different core types.

To correctly compute runtime and energy of a task depend-
ing on the core type the task runs on, we scale the workload
with a core type-dependent constant factor ri that expresses the
relative performance of different core types. For big.LITTLE,
the factor for LITTLE cores is set to 1, and the factor for big
cores will normally be less than 1 as the runtime on a big core
will be shorter than on a LITTLE. Additionally, there must be
a power profile for each core type. In the equations, we index
relative performance and power profile by the processor group
index i, which however uniquely defines the core type.

To introduce task-type awareness, relative performance and
power profiles must additionally be indexed by task index j
(actually the task’s type, but that is uniquely determined by
the task index). We obtain optimization problem minE with

E :=
∑
i,j,k

xi,j,k ·
τj · ri,j · Pow(fk, i, j)

fk · ej(pi)
(3)

under the constraint that for each core l, the runtime of that
core must not exceed the deadline, i.e. Tl ≤M where

Tl :=
∑

i∈Gl,j,k

xi,j,k ·
τj · ri,j

fk · pi · ej(pi)
. (4)

Here Gl denotes the set of all groups that comprise core l.
Constraints (1) and (2) remain as in the Crown scheduler.
Variables E and Tl are no variables in the ILP but only
abbreviations for expressions (3) and (4). Besides the variables
xi,j,k, the symbols in the formulae like τj or Pow(fk, i, j) are
constants in the ILP representing the taskset or the platform.

Please note that the approach by Keller and Holmbacka
can be considered a special case of our scheduling where all
maximum task widths are artificially set to 1, i.e. the tasks
remain sequential.
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C. Scheduling for Fixed Energy and Power Budgets

The ILP from Subsec. III-B is quite general with respect to
optimization target. When a fixed energy budget Emax is given
instead of a fixed deadline M to be met, we just switch the
target function for energy and the time constraint and obtain:

minTmax

under constraints
∀l : Tl ≤ Tmax ,

E ≤ Emax .

We must introduce an additional variable Tmax because
the time constraint from the previous subsection is really a
constraint for each core, which cannot directly be transferred
to a target function. Thus, the ILP becomes a mixed ILP
(MILP). Constraints (1) and (2) remain as they are.

If an average power budget Pavg is given, we again use
minTmax as optimization problem with the accompanying
constraint ∀l : Tl ≤ Tmax. We relate time, average power
and energy in the usual way and obtain the constraint:

E ≤ Pavg · Tmax .

Because of the target function, the ILP solver tries to make the
inequality’s right hand side, i.e. Tmax, as small as possible.
However, this increases the energy E, i.e. the left hand side, so
that the ILP solver strives towards bringing both sides as close
as possible. Again, constraints (1) and (2) remain as they are.
For convenience, all MILPs are summarized in the appendix.

IV. EXPERIMENTS

In our experiments, we consider synthetic task sets with 10,
20, 40, and 80 tasks as in [1]. For each cardinality, 10 task
sets are chosen and scheduled. The workloads are taken from
[1], in units of 106 cycles on LITTLE. Thus, the performance
factors ri,j can be taken from [2, Table 4]. Each task is
randomly and uniformly assigned one of the types MEMORY,
BRANCH, FMULT, SIMD, or MATMUL as in [2]. To ensure that
task sets are suitable for parallelization, the joint workload
of BRANCH tasks is limited to 10% of the total workload. A
task’s maximum width is set with regard to its type as follows:

W (j) =


1, if j is of type BRANCH,

wj ∈ {2, 4}, if j is of type MEMORY or FMULT,

4, if j is of type SIMD or MATMUL.

For task types SIMD and MATMUL, considerable parallelization
potential can be expected, whereas tasks mainly consisting of
branch instructions may have to be executed sequentially. For
MEMORY and FMULT task types, some parallelization seems
realistic, so the respective widths are either 2 or 4 (randomly
determined based on a uniform distribution).

The big cores’ highest frequency level is not available on
the LITTLE cores and is therefore ignored during schedul-
ing, hence the set of possible operating frequencies is
{0.6, 0.8, 1.0, 1.2, 1.4} GHz. As workload is in 106 cycles,
runtimes will be in milliseconds.

The parallel efficiency functions for all tasks j are defined as
ej(1) = 1.0, ej(2) = 0.9 and ej(4) = 0.86. Thus, we account
for the initial overhead incurred by any kind of parallelization
as well as the diminishing efficiency due to the increasing
number of processing elements involved in the computations.

We derive our power profile Pow(fk, i, j) from [2, Table 3].
The interested reader can find details in the appendix. As the
power is given in Watt, and runtimes in milliseconds, energy
values are computed in milli Joule.

The experiments comprise three scheduling approaches: the
task type-aware approach for sequential tasks (TAS) from
[2], the task type-ignorant crown scheduler for parallelizable
tasks (TIP) from [1] (adapted to the heterogeneous platform)
and our task-type aware crown scheduler for parallelizable
tasks (TAP). We investigate three optimization targets, of
which we will only present the first scenario (given deadline
constraint, minimize energy) in detail for space restrictions,
and summarize the other scenarios (for details cf. appendix).

We derive the deadline for each task set by computing the
average between running all tasks utilizing all processors on
highest and lowest frequency, respectively:

M = 0.6 ·

∑
j τj

p·f1 +
∑

j τj

p·fs
2

. (5)

The factor 0.6 helps to emphasize the differences between
sequential and parallel scheduling, as some task sets might not
be schedulable in TAS under tight deadline constraints while
parallel scheduling still is. Energy and power budgets are also
derived from the task set characteristics. The interested reader
can find details in the appendix.

All schedulers were implemented in Python utilizing the
gurobipy module. Accordingly, the Gurobi 8.1.0 solver was
deployed. It was executed on an AMD Ryzen 7 2700X in 16
threads (8 physical cores). A 5 minute timeout for solving
each individual (M)ILP was in effect.

Table I provides information on scheduling time2, number
of timeout occurrences, and number of infeasible models for
each of the combinations of scenario and scheduling approach.
Scheduling tasks sequentially under a deadline (scenario 1) or
energy (scenario 2) constraint does not permit a valid schedule
in some small task sets. Apart from that, runtimes are heavily
influenced by the number of ILPs which cannot be solved
to optimality within the 5 minute time limit. Most of the
remaining ILPs are solved within seconds.

Table II shows average makespan and average energy
consumption for each task set cardinality, relative to task-
aware crown scheduling (TAP) as well as the number of
deadline violations for task type-ignorant scheduling (TIP)
when optimizing for energy consumption. Scheduling larger
task sets for sequential execution does not yield a significant
difference with regard to the parallel scheduler, neither con-
cerning makespan nor energy consumption. However, for some
small task sets, no feasible sequential schedule exists, while

2All runtimes are sums of user and system times, whereas the time limit
is set in real (wall clock) time.
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TABLE I
RUNTIME, TIMEOUT OCCURRENCES AND NUMBER OF INFEASIBLE

MODELS FOR ALL SCENARIOS AND SCHEDULING APPROACHES

scenario scheduling runtime [min] #timeouts #infeasible

1
TAP 563 6 0
TAS 637 7 4
TIP 254 2 0

2
TAP 764 9 0
TAS 797 9 2
TIP 1383 15 0

3
TAP 683 8 0
TAS 733 9 0
TIP 1653 18 0

TABLE II
RESULTS FOR SCENARIO 1, RELATIVE TO TAP

scheduling task set card. makespan energy #deadline viol.

TAS

10 1.000 1.046
20 1.000 1.001
40 1.000 1.000
80 1.000 1.000
total 1.000 1.008

TIP

10 1.246 1.259 7
20 1.225 1.316 8
40 1.157 1.313 9
80 1.109 1.341 8
total 1.184 1.307 32

parallel execution can be completed prior to the deadline in
any case. Task type-ignorant scheduling leads to an increase
in both makespan (more pronounced for small task sets) and
energy consumption (more pronounced for larger task sets). It
should be noted that in 80% of all cases, task type-ignorant
scheduling brings about a deadline violation.

In scenario 2 (given energy budget, minimize makespan),
the task type-ignorant scheduler again performs considerably
worse than the other two for all task set cardinalities, the
difference being yet more noticeable than in the first scenario.
Moreover, roughly 25% of the task type-ignorant schedules
do not comply with the energy budget. Only for small task
sets, sequential scheduling leads to an increase in makespan
compared to parallel scheduling. In medium and large task
sets, most of the tasks are executed sequentially in any case.
Thus, no deviation from the sequential schedule is to be
expected even if scheduling tasks in parallel is permitted.
Again, for some small task sets no feasible solution of the
respective ILP can be obtained under sequential scheduling,
while scheduling in parallel always yields a valid schedule.
Result details can be found in the appendix.

For makespan optimization under an average power budget
(scenario 3), the schedulers’ relative performance is very
similar to the one in scenario 2. The sequential scheduler
manages to narrow the gap to TAP for small task sets. Due to
the nature of the ILP constraints, a feasible solution can always
be found: to lower the power, just stretch the runtime by lower
frequency. Interestingly, the task type-ignorant scheduler over-
estimates energy consumption and consequently does not fully
exploit the given power budget — at the cost of an increased
makespan. Result details can be found in the appendix.

V. CONCLUSIONS

We have presented a static scheduling algorithm for sig-
nal processing applications modelled as a set of streaming
tasks. The algorithm either minimizes energy consumption
for a given throughput or maximizes throughput for a given
energy budget per input or for a given average power budget.
The scheduling algorithm allows parallelization of tasks and
takes heterogeneity of the platform and different execution
characteristics of tasks into account. Our scheduling algorithm
is derived as an extension of the Crown Scheduler [1].

We have compared the results for the power and per-
formance profile of an ARM big.LITTLE architecture with
restricted versions, i.e. a task type-unaware Crown scheduler
(already adapted to the heterogeneous platform) and scheduler
from [2], where tasks cannot be parallelized. We achieve
advantages for each target function, up to 33%.

Future work will comprise modeling of communication
cost between tasks, as e.g. communication between caches of
different core types is more expensive than communication
within one core type. Also, we will explore explicit modeling
of task dependencies to include input-to-output latency as an
optimization goal. Finally, we plan experiments with a real
ARM board to confirm the effect of our optimization also by
measurement.

APPENDIX

We provide an appendix with further details and results
under https://e.feu.de/ii .
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