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Abstract—In this paper, the problems of indoor sound source
localization using a wireless acoustic sensor network are ad-
dressed and a new sparse Bayesian learning based algorithm is
proposed. Using time delays for the direct paths from candidate
source locations to microphone nodes, the proposed algorithm
estimates the most likely source location. To reduce the amount
of data that must be exchanged between microphone nodes, a
Gaussian measurement matrix is multiplied on to each channel
and the proposed method operates directly on the compressed
data. This is achieved by exploiting sparsity in both the frequency
and space domains. The performance is analysed in numerical
simulations, where the performance as a function of the reverber-
ation times in investigated, and the results show that the proposed
algorithm is robust to reverberation.

Index Terms—Sound Source Localization, Sparse Bayesian
Learning, Array Signal Processing, Reverberation Environment.

I. INTRODUCTION

Sound source localization using microphone arrays is one
of the key technologies for many applications such as telecon-
ferencing [1], robot audition [2] and hearing aids [3]. Many
algorithms have been derived for tackling the sound source
localization problem such as time delay estimation based
methods [4], beam-forming methods [5], subspace methods
and statistical methods [6]. However, most of the methods suf-
fer a heavy performance loss in the reverberate environments
which limits their practical applications.

Indoor source localization is particularly challenging due to
reverberation, which causes the sound waves to be reflected by
the surrounding walls and mixed with the direct sound. The
sound propagation can be treated as several image sources in
a free field that are correlated with each other and the sound
source [7]. Recently, sparse Bayesian learning (SBL) based
sound source localization has attracted widespread attention
because it achieves high-resolution performance and typically
outperforms conventional methods when localizing correlated
and non-stationary sources [8]–[11]. The SBL framework esti-
mates hyper-parameters by maximizing the posterior distribu-
tion of candidate sources amplitude. The posterior distribution
can be derived from the likelihood function and the prior distri-
bution. Assuming the likelihood function and prior information
follows independent and identically distributed (i.i.d) complex
Gaussian distributions, the posterior distribution is also a
complex Gaussian distribution. Maximizing the likelihood, the
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hyper-parameters can be determined, which are the amplitudes
of candidate sources. The SBL methods have been reported to
perform well with correlated sources [10], and methods based
on this methodology are thus good candidates for indoor sound
source localization, as considered in this paper.

The method proposed builds on SBL and compressed sens-
ing theory, and the two main contributions of the paper are the
following. First, a SBL based sound source localization model
is proposed using the time delay of the direct-path component
of the sound propagation. This model does not make any
assumptions on the array geometry and is thus applicable
in wireless acoustic sensor networks. Second, a compressed
sensing and SBL based sound source localization algorithm
is proposed based on the model, which efficiently reduce the
amount of data that has to be transmitted within the network.

The remainder of the paper is organised as follows. In
Section 2, a sparse signal model for indoor sound source
localization is proposed and used for solving the localization
problem with SBL. In Section 3, the temporal domain array
data is compressed and a SBL based sound source localization
algorithm is proposed that operates on the compressed data.
The experimental results are provided in Section 4, and we
conclude and elaborate on future work in Section 5.

II. BACKGROUND

In this section, we first construct an array manifold matrix
using the direct path components from the candidate sources to
each of the microphone nodes. Then, we show how to estimate
the sound source location using SBL beamforming.

A. Sparse Model for Indoor Sound Source Localization

We consider the localization of a single source in two
dimensions, i.e., we assume that the sound source and all
microphone nodes are located in the same horizontal plane
described by Cartesian coordinates. The coordinates of the
sound source are s = (x0, y0) and the coordinates of the
m’th microphone in a wireless acoustic sensor network are
rm = (xm, ym) for m = 1, 2, . . . ,M , which are here assumed
known. That is, the time delay from the sound source to
microphone node m = 1, 2, . . . ,M is

τm =
|rm − s|

c
, (1)

where c is the sound velocity in air. The steering vector
is af = [ej2πfτ1 , ej2πfτ2 , · · · , ej2πfτM ]T, where f is the
frequency and (·)T denotes the matrix/vector transpose.
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Fig. 1. Illustration of the candidate sound source positions in the target plane.

In the sparse representation framework, we define K candi-
date source positions (pk, k = 1, 2, · · · ,K) in the target plane
as depicted in Figure 1. The steering vector for the kth can-
didate source is akf = [ej2πfτk1 , ej2πfτk2 , · · · , ej2πfτkM ]T,
where τkm = |rm−pk|

c is the time delay from the kth candidate
source to the m’th microphone node. Considering all K
candidate sources, the array manifold matrix, or dictionary,
can be constructed as Af = [a1f , · · · ,akf , · · · ,aKf ].

The model for the microphone array data is thus given by

Xf = AfSf +Nf , f = 1, 2, · · · , F, (2)

where Xf is the array data at the f ’th frequency bin, Sf
is a sparse vector with non-zero elements corresponding to
true source complex amplitude at the truth bearing while other
elements are zero. The background noise is denotedNf , which
is the noise at the f ’th frequency bin, and it is assumed to be
white Gaussian noise and uncorrelated with Sf .

The model in (2) represents the sound source localization
problem as a sparse representation one, hence, we can solve
it using SBL as described in the next subsection.

B. Sound Source Localization based on SBL

Solving the problem in (2) using SBL involves determining
the posterior distribution of Sf from the prior distribution of
Sf and the likelihood. We process by assuming a circular,
symmetric white Gaussian to the observed noise. So the
likelihood function is

p(Xf |Sf ;σ2
f ) = CN

(
Xf |AfSf , σ

2
fI
)
, (3)

For the f ’th frequency bin, the complex Gaussian prior of the
source is

p(Sf ; ξf ) = CN (Sf |0,ΣSf ), (4)

where, ΣSf = diag(ξf ), ξf = [ξ1f , · · · , ξKf ], the hyper-
parameter ξkf controls the amplitude of the kth candidate
source at the f ’th frequency bin, and diag(x) is the diagonal
operator with the entries of the vector x on the diagonal.and
the posterior distribution of Sf is

p(Sf |Xf ; ξf , σ
2
f ) ∝ p

(
Xf |Sf ;σ2

f

)
p (Sf ; ξf )

= CN (Sf |Λf ,Σxf ),
(5)

where,

Λf = ΣSfA
H
f Σ−1

xfXf

Σf = ΣSf −ΣSfAf
HΣ−1

xf AfΣSf ,
(6)

and
Σxf = E

[
XfX

H
f

]
= AfΣSfAf

H + σ2
fI (7)

is the data covariance matrix, the superscript (·)H denotes the
conjugate transpose.

The hyper-parameters ξf and σ2
f are estimated using the

evidence:

ξ̂f = arg max
ξf>0

log p(Xf ; ξf , σ
2
f )

= arg min
ξf>0

{
log det(Σxf ) +XH

f Σ−1
xfXf

}
,

(8)

where det(·) denotes taking the determinant of a matrix.
The objective function of (8) is non-convex. However,

according to [9] and [10], ξ̂f can be approximately solved
using a fixed point update method

ξ̂ikf = ξ̂i−1
kf

aH
kfΣ

−1
xf ΥxfΣxfakf

aH
kfΣ

−1
xf akf

, (9)

where ξ̂ikf is the estimate of the k’th parameter of ξf at the
i’th iteration, and Υxf = XfX

H
f is the array data cross-

spectral matrix. Then, the hyper-parameter σ2
f , which is the

noise variance at frequency f , can be estimated using the
maximum likelihood procedure as

σ̂2
f =

1

M − K̄
Tr
[(

IM −ANA+
N
)
Υxf

]
, (10)

where K̄ is the predefined number of sources, AN is the
subset of Af and N is the set of the K̄ largest parameters in
ξif , (·)+ denote the pseudo inverse operator, and Tr[·] is the
trace operator.

If we assume that ∀Sf , f = 1, 2, · · · , F have a common
sparsity structure, the hyper-parameters of each frequency bin
ξ̂f can be combined:

ξ̂1:F =
1

F

F∑
f=1

ξ̂f , (11)

where ξ̂1:F denotes the power of the sources at each grid point.
Moreover, the update functions become

ξ̂ik,1:F = ξ̂i−1
k,1:F

∑F
f=1 a

H
kfΣ

−1
xf ΥxfΣxfakf∑F

f=1 a
H
kfΣ

−1
xf akf

(12)

σ̂2 =
1

M − K̄
Tr
[(

IM −ANA+
N
)
Υx

]
, (13)

where ξ̂ik,1:F is the k’th parameter of ξ̂1:F at the i’th iteration,
N is the set of the K̄ largest parameters in ξ̂i1:F , and Υx =∑F
f=1XfX

H
f .

III. PROPOSED SOUND SOURCE LOCALIZATION METHODS

In this section, we reduce the volume of array data by
adding a measurement matrix to each channel and propose
methods for sound source localization using compressed data
that utilize both spatial and spectral sparsity.
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A. Sound Source Localization Model for Compressed Data

Compressed sensing methods can be used to reduce the data
size since most sound sources are sparse in some domains such
as the frequency domain [12]. After multiplying the predefined
sparse sensing matrix to raw data of each channel, we have

y =

 Φ1Ψ
. . .

ΦMΨ

(X̄ + V
)
, (14)

where y = [Φ1x̄
T
1 , · · · ,ΦM x̄

T
M ]T is a vector containing the

compressed measurement of all M microphones, x̄m is the
uncompressed signal data of m’th microphone and y ∈ RNM
which can be considered as a complex vector with zero
imaginal part, Φm ∈ CN×F is the sparse sensing matrix for
the m’th microphone data to reduce the data volume, F is
the frequency bins number and N � F so the size of the
microphone array data is reduced at a compression rate of
F−N
F . Ψ denotes F × F dimensional inverse DFT matrix.

Moreover, X̄ = [X̄T
1 , · · · , X̄T

M ]T is a vector containing the
frequency data of the source signals and X̄m is the source
signals of the m′th microphone. V is complex Gaussian noise
and V ∈ CNM .

To estimate the sound source location, X̄ must be recon-
structed as the form of X = [XT

1 , · · · ,XT
f , · · · ,XT

F ]T since
X can be expressed using steering vector as (2), where Xf

is f th frequency bin data of all microphones and Xf ∈ CM .
This X can be obtained by multiplying a permutation matrix
T̄ with X̄ , and X̄ = TX = TAS, where T is the inverse
of T̄ and A = diag[A1, · · · ,AF ] is a block diagonal matrix,

S =
[
ST

1 , · · · ,ST
f

]T
, S ∈ CKF . Note that the only difference

between X and X̄ is that X index by frequency blocks while
X̄ index by channel blocks.

Assuming the same sparsity for each channel because
signals received by all channels are generated by the same
stationary sources, we have Φm = Φ, m = 1, · · · ,M . Then,
(14) can be rewritten as

y = Ψ̃TAS + Ψ̃V = US +W , (15)

where Ψ̃ = diag [ΦΨ, · · · ,ΦΨ] and U = Ψ̃TA is a
joint measurement matrix which utilizes the sparsity in both
frequency and space, and W = Ψ̃V is the noise which can be
considered as the circular, symmetric complex Gaussian noise.

B. Frequency estimation using Compressed Data

The linear model of (15) can be solved using the SBL
method proposed in II-B. However, it is computationally
expensive because S is a high-dimensional vector. To reduce
the computational load, we can estimate the frequencies of the
source first. Then estimate the source location using indexes
of the highest power density frequencies.

Consider the compressed measurement of m’th channel,

Φx̄m = ΦΨX̄m = Θ(S̄m + S̃m) = ΘS̄m + N̄m (16)

where X̄m ∈ CF is the frequency date of the source signals
received by the m’th microphone, and S̄m is sparse vector with

sparsity F̄ , i.e., there are F̄ elements in S̄m over exceeding a
threshold. Furthermore, S̃m contains the other smaller remain-
ing elements and assume that S̃m follows a circular, symmetric
complex Gaussian distribution CN (0, λmI). As N̄m = ΘS̃m
and ΘΘH = aI, the noise N̄m follows a complex Gaussian
distribution

p(N̄m) = CN (N̄m|0, λmΘΘH) = CN (N̄m|0, σ2
mI). (17)

Then, considering all M channels,

ȳ = ΦΨ
(
X̃ + Ṽ

)
= Θ(S̄ + S̃) = ΘS̄ + N̄ (18)

where, ȳ = [Φx̄1, · · · ,Φx̄M ] ∈ RN×M is the matrix of
compressed measurements, X̃ = [X̄1, · · · , X̄M ] ∈ CF×M
is a multidimensional vector in which each column is the
frequency data vector of source signals,Ṽ = [V1, · · · ,VM ]
is a multidimensional vector in which each column is the
noise of each microphone. S̄ = [S̄1, · · · , S̄M ] ∈ CF×M is
a row-sparse matrix, and N = [N̄1, · · · , N̄M ] ∈ CN×M
contains the noise. Then, similar to II-B, the frequency can
be estimated using SBL. First, we define a hyper-parameter
vector, ζ = [ζ1, · · · , ζF ]T , which represents the amplitude
covariance of all frequency bins. The complex Gaussian prior
is

p(S̄; ζ) =
M

Π
m=1
CN

(
S̄m|0,Γ

)
(19)

where Γ = diag (ζ), and the likelihood function is

p(ȳ|S̄;σ2
m) =

M

Π
m=1
CN

(
x̄m|ΘS̄m, σ2

mI
)
. (20)

Similar to (9) and (10), the hyper-parameters ζ and σ2
m can

be updated using the following formula:

ζ̂if = ζ̂i−1
f

ΘH
f Ξ−1

(
ȳȳH

)
ΞΘf

ΘH
f Ξ−1Θf

(21)

σ̂2
m =

1

M − F̄
Tr
[(

IM −ΘMΘ+
M
) (
ȳȳH

)]
, (22)

where
Ξ = E

[
ȳȳH

]
= ΘΓΘ + σ2

mI. (23)

Here, ζ̂if is the estimate of f ’th element in ζ at the i’th
iteration, σ̂2

m is the estimate of the noise variance, Θf is the
f ’th column of Θ, F̄ is the predefined number of frequency
bins with non-zero coefficients, i.e., the sparsity of S̄m, and
M is the index set of the F̄ largest parameters in ζi.

C. SBL-based Source Localization using Compressed Data

The model for compressed data was given in (15). Dividing
the space into K uniformly distributed grid points as depicted
in Figure 1 and assuming there is a source at each grid point,
the complex amplitudes of all candidate sources S ∈ CKF is
a high-dimensional vector, which can be processed as follows.

As all frequency bin blocks of S =
[
ST

1 , · · · ,ST
F

]T
exhibits same sparsity, (15) can be rewritten as

y =
F∑
f=1

{UfSf +Wf} , (24)
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where Uf = Af ⊗Φψf is a sub-matrix of U, ⊗ denotes the
Kronecker product, and ψf is the f ’th column of Ψ. Assuming
that the sources are i.i.d complex Gaussian distributed at each
frequency bin, we can process each frequency bin separately,
while dealing with other frequency bins as noise. That is,

y = UfSf + W̄f , f = 1, 2, · · · , F (25)

where W̄f consists of all the noise at the f ’th frequency bin
and p(W̄f ) = CN (W̄f |0, σ2

fI), σ2
f is the noise variance at the

f ’th frequency bin.The equation (24) can be solved as follows:
Since most sound sources are sparse in frequency, we

can estimate sound source location just using the non-zero
frequency elements to reduce the the heavy computational load
and the influence of the noise. Therefore, instead of using
all frequency bins {1 : F} as in (24), we use the index set
M defined in (22). Since ∀Sf , f ∈ M have the common
sparsity according to our assumption, the hyper-parameters of
each frequency bin ξ̂f can be combined as ξ̂M = 1

F̄

∑
M ξ̂f ,

where ξ̂M denotes the power of the sources at each grid point.
Similar to (12) and (13), the hyper-parameter ξM and σ2

f

are estimated using:

ξ̂ik,M = ξ̂i−1
k,M

∑
MUH

kfΣ
−1
yf ΥyΣyfUkf∑

MUH
kfΣ

−1
zf Ukf

(26)

σ̂2 =
1

M − K̄
Tr
[(

IM −UNU+
N
)
Υy

]
(27)

Σyf = E
[
yyH

]
= UfΣSfUf

H + σ2
fI, (28)

where Υy = yyH is the cross-spectrum of the compressed
array data, ξ̂ik,M is the k’th element of ξ̂M at the i’th iteration,
and N is the set of the K̄ largest elements in ξ̂iM. The
algorithm is summarized in Algorithm 1.

IV. EXPERIMENTAL RESULTS

In this section, the performance of proposed algorithm in a
simulated wireless acoustic sensor network in an acoustic envi-
ronment resembling an indoor scenario is evaluated versus re-
verberation time, SNR and compression rate. The microphone
array data is generated using the RIR Generator provided in
[13], with a simulated room with dimensions L×W ×H =
7× 6× 6 m. We consider the single source case and assume
that the sound source and all microphones are located in the
same horizontal plane (H = 2 m). We use an audio segment
of violin provided in [14] as the sound source. In order to
avoid silence segments at the beginning of the file, we choose
the period from 10001’th point to 11024’th point. The onset of
this period can be chosen using method proposed in [15]. The
frequency of sampling is 48KHz, and the number of samples is
1024. The localization Root-Mean-Square-Error (RMSE) and

accuracy are defined as RMSE = 1
Nt

√∑Nt

i=1 ‖P̂i − P0‖ and
Accuracy = Nr/Nt, respectively, where Nt is the number
of Monte-Carlo experiments, P̂i is the estimation result at
the i’th Monte-Carlo experiment, P0 is the true sound source
location. A circular area (radius=0.2m) centered at the true

Algorithm 1 The proposed algorithm
Number of iterations for frequency estimation if ← 0;
Error of frequency estimate ef ← 1;
Number of iterations for sound source localization id ← 0;
Error of sound source localization ed ← 1;
while if ≤ ifmax and ef ≥ efmin do

Update if ← if + 1;
Compute Ξ using (23);
Update ζ̂i using (21);
Find the frequency set M;
Update σ̂2

m using (22);
Update ef ← ||ζ̂i−ζ̂i−1||1

||ζ̂i||1
;

end while
while id ≤ idmax and ed ≥ edmin do

Update id ← id + 1;
Compute Σyf using (28);
Update ξ̂iM using (26) and all frequencies in the set M;
Find the index set N ;
Update σ̂2 using (27);
Update ed ←

||ξ̂iM−ξ̂
i−1
M ||1

||ξ̂iM||1
;

end while
return The hyper-parameter ξ̂M;
Amplitude of kth candidate source PSBL(k) = ξ̂k,M.

source location is defined as the correct localization area,
i.e., estimates located in this area are considered correct and
otherwise wrong, Nr is the total number of correct estimates.
Note that other state-of-art methods can not work under this
scenario except SBL.

In the first experiment, the performance versus different
reverberation times is tested. We use a wireless acoustic sensor
network with randomly located microphones, as depicted in
Figure 2 (a). The compression is 96 %, SNR=60 dB, the target
space is uniformly divided as in Figure 1, and the distance
between adjacent candidate sources is 0.2m. The results show
that the proposed algorithm is robust to reverberation using
the random distributed array as seen in Figure 2(b)-(d).

In the next experiment, the performance versus different
SNRs is verified. The other parameters are set as in the
first experiment except that the compressed rate is 80%. The
results show that the algorithm is sensitive to the SNR. The
localization accuracy of this algorithm is quite low under low
SNR environment, see Figure 3(b), and high under high SNR
environment, see Figure 3(c)-(d). The reason is that Φ is a
Gaussian matrix. Better performance under low SNR can be
achieved if the compressed rate is lower.

In the final experiment, RMSE and accuracy versus rever-
beration time and compression rate are verified separately.
The parameters are set the same as in the first and second
experiments.The results show that the RMSE and the accuracy
is robust to different reverberation times as it can be seen in
Figure 4(a)-(b). Moreover, the proposed method yields low
RMSE and high accuracy under high compression rates (96%)
as it can be seen in Figure 4(c)-(d).
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Fig. 2. (a) Locations of Microphone node and sound source . Localization
result with (b) RT = 0.2 s, (c) RT = 0.4 s, and (d) RT=0.6 s. The red star in
(a) denotes the sound source location.
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Fig. 3. (a) Microphone node and sound source locations. Localization result
with (b) SNR=25dB, (c) SNR=30dB, and (d) SNR=35dB.

V. CONCLUSION

A sound source localization algorithm based on SBL and
compressed data has been proposed in this paper. The method
is intended for wireless acoustic sensor networks in indoor ap-
plications. The proposed method works by modeling the sound
propagation from candidate locations to the microphones and
exploits the sparsity of sound sources in both frequency and
space. The proposed method reduces the amount of data that
has to be exchanged via a measurement matrix and does not
require any particular array geometry. The experimental results
show that the proposed method performs well and is robust to
reverberation and it is thus well-suited for indoor applications.
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