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Abstract—Human activity recognition (HAR) is encountered in
a plethora of applications, such as pervasive health care systems
and smart homes. The majority of existing HAR techniques
employs features extracted from symbolic or frequency-domain
representations of the associated data, whilst ignoring completely
the behavior of the underlying data generating dynamical system.
To address this problem, this work proposes a novel self-tuned
architecture for feature extraction and activity recognition by
modeling directly the inherent dynamics of wearable sensor
data in higher-dimensional phase spaces, which encode state
recurrences for each individual activity. Experimental evaluation
on real data of leisure activities demonstrates an improved recog-
nition accuracy of our method when compared against a state-
of-the-art motif-based approach using symbolic representations.

Index Terms—Human activity recognition, recurrence quantifi-
cation analysis, nonlinear data analysis, motif discovery, wearable
sensors

I. INTRODUCTION

Human activity recognition (HAR) and classification using
wearable sensor data is gaining an ever increasing interest,
mainly due to its utility in a plethora of applications, such
as in pervasive health care systems [1], smart homes [2],
and surveillance systems for indoor and outdoor activities [3].
Nevertheless, the latest trends in HAR primarily focus on
addressing the challenge of moving towards data processing
architectures governed by the need to analyze and decipher
complex activities while in data capture [4], [5]. To this
end, motif discovery attempts to extract new, meaningful and
unknown knowledge from data, as well as to monitor and
track structural similarities in streaming data generated by
a network of sensors. More specifically, time series motifs,
which are approximately repeated subsequences in a longer
time window [6], are exploited for representing the meaningful
information content of the original data. Numerous studies
have shown the potential of using motifs for detecting and
classifying activities and events [7]–[9], by addressing the
problem of motif discovery in unidimensional data.
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Among the several existing motif discovery techniques, the
symbolic aggregate approximation (SAX) method [10] has a
prominent role, due to its conceptual simplicity and compu-
tational efficiency. Recently, a modified grammar induction
algorithm, namely, the modified Sequitur algorithm [8], [11],
[12] has been introduced, to improve the performance of SAX.
Although such methods can lead to high precision results in
the unidimensional case for relatively smooth data, their per-
formance often degrades in more general cases. Furthermore,
their enhanced performance comes at the cost of an increased
sensitivity to the values of a set of parameters, whose accurate
tuning is a demanding task.

To overcome these limitations, this work proposes an al-
ternative approach for accurate human activity recognition,
which exploits the temporal variability of the underlying
dynamical system that generates the data associated with a
specific activity. To this end, recurrence quantification analysis
(RQA) [13] will be exploited to perform a sophisticated non-
linear analysis of sensor streams, while being also able to treat
nonstationary and short data series. RQA comprises of a set
of appropriate quantitative measures for the quantification of
recurrent, typically small-scale, structures, and the detection of
critical transitions in the system’s dynamics (e.g. deterministic,
stochastic, random).

RQA has been used recently in the field of HAR, demon-
strating a promising performance. In [14], the complexity and
recurrence properties of daily non-complex human activities
measured by wearable sensors are investigated. Along these
lines, [15] combines RQA and multiscale entropy to char-
acterize trunk postural control and motor complexity during
childhood, while [16] employs recurrence plots to quantify
the local dynamic stability of human walking kinematics. On
the other hand, the methods proposed in [17]–[19] focus on
offline experimentation with benchmark datasets and various
classifiers applied on time- or frequency-domain features.

Although these previous studies also try to exploit the
inherent time-varying dynamics of the recorded data, how-
ever, either they rely on the time variations of statistical or
recurrence measures, or they employ complex classifiers, in
order to study qualitatively the differences between distinct
activities. To address the above limitations, the contributions of
our work are the following: (i) the underlying data generating
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processes are modeled directly in a higher-dimensional phase
space identifying more accurately the time-evolving dynamics
of sensor streams; (ii) an efficient feature extraction scheme
is designed for the discovery of information-rich patterns that
best capture the underlying data dynamics; and (iii) a totally
self-tuned architecture is designed for unsupervised HAR.

The rest of the paper is organized as follows: Section II
introduces briefly a well-established motif discovery method,
the so-called SAX, which has been extensively used for HAR.
Section III analyzes in detail our proposed HAR architecture,
based on RQA features and a linear-kernel support vector
machine for activity recognition. Section IV evaluates the
performance of our method on a real dataset of complex
leisure activities, and compares its accuracy with a SAX-based
approach. Finally, Section V summarizes the main outcomes
of this work and gives directions for future extensions.

II. SAX-BASED MOTIF DISCOVERY FOR HAR

This section describes briefly the core architecture of a state-
of-the-art online motif discovery method, shown in Fig. 1,
which will be used as a benchmark to compare against our
proposed RQA-based framework. The rationale for choosing
motif discovery stems from the fact that the occurrence fre-
quency of the motifs is used as a classification feature, instead
of the symbolic representation itself. This resembles the RQA
approach, which is based on the number of state recurrences
in the phase space.

Discovering similarities directly in streaming data is typi-
cally a demanding task, in terms of computational and memory
complexity. In order to improve the efficiency of data mining
from time series, the symbolic aggregate approximation (SAX)
is a well-established technique. SAX transforms the sensor
data streams into strings of discrete symbols. The main benefit
of this algorithm is the effective dimensionality reduction,
while satisfying a lower bounding property, which guarantees
that a distance measure applied on two symbolic strings lower
bounds the true distance between the original time series [10].
Specifically, a sliding window runs over the time series, and a
vertical segmentation is applied first, which divides the current
window into equally sized non-overlapping segments. Then,
for each segment the average value is computed followed by
a horizontal segmentation, which associates the average to a
symbol selected from a predetermined alphabet. This alphabet
is constructed by dividing the whole range of values of a
given time series into 2Q intervals, where Q ∈ N is defined
by the user according to the required granularity. Then, each
symbol from the alphabet is assigned to an interval determined
by a pair of breakpoints. In our implementation, the set of
breakpoints is defined by the real numbers that divide the area
under the standard Gaussian distribution into 2Q equal regions.

To extract re-occurring patterns (a.k.a. motifs) from a SAX-
based symbolic representation of the current window, the
modified Sequitur algorithm is applied next. This recursive
algorithm detects repetitions of bigrams, that is, of two
consecutive symbols, and extracts them from the symbolic
string by defining rules constituting a grammar. In order

Fig. 1. SAX-based motif discovery and HAR architecture.

to obtain motifs of variable length, each rule corresponds
to a set of bigrams, instead of matching a single bigram,
as in the original Sequitur algorithm [11]. Having applied
these rules, a bag of motifs is extracted for each streaming
window, followed by a feature extraction process. In particular,
a supervised learning approach is employed, where bags of
motifs representing streams that correspond to the same target
activity are merged, forming a new bag of unique core activity
motifs. Then, for each motif in the core activity bag, the
frequency of occurrence among the set of already extracted
bags is measured. Finally, the frequencies of all motifs over
all the available time windows constitute the feature matrix,
to be further used for activity classification.

III. PROPOSED RQA-BASED FEATURE EXTRACTION FOR
HAR

In contrast to a SAX-based approach, our proposed method
capitalizes on the efficiency of RQA to extract the underlying
dynamics of a recorded data stream by mapping the time series
in a higher-dimensional phase space of trajectories. A major
advantage of our feature extraction approach, when compared
with symbolic representations for motif discovery, is the fully
self-tuned nature, in the sense that no prior parameter fine-
tuning is required in a manual fashion, as is the case with
SAX-based techniques.

More specifically, a recurrence plot (RP) is derived first,
which depicts those times at which a state of a dynamical
system recurs, thus revealing all the times when the phase
space trajectory of the dynamical system visits roughly the
same area in the phase space. To this end, RPs enable
the investigation of an m-dimensional phase space trajectory
through a two-dimensional representation of its recurrences.
Such recurrence of a state occurring at time i, at a different
time j is represented within a two-dimensional square matrix
with ones (recurrence) and zeros (non-recurrence), where both
axes are time axes.
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Given a time series of length N , {ri}Ni=1, a phase space
trajectory can be reconstructed via time-delay embedding,

xi = [ri, ri+τ , . . . , ri+(m−1)τ ] , i = 1, . . . , Ns , (1)

where m is the embedding dimension, τ is the delay, and
Ns = N−(m−1)τ is the number of states. Having constructed
a phase space representation, an RP is defined as follows,

Ri,j = Θ (ε− ‖xi − xj‖p) , i, j = 1, . . . , Ns , (2)

where xi, xj ∈ Rm are the states, ε is a threshold, ‖ · ‖p
denotes a general `p norm, and Θ(·) is the Heaviside step
function, whose discrete form is defined by

Θ(n) =

{
1, if n ≥ 0

0, if n < 0
, n ∈ R . (3)

The resulting matrix R exhibits the main diagonal, Ri,i =
1, i = 1, . . . , Ns, also known as the line of identity (LOI).
Typically, several linear (and/or curvilinear) structures appear
in RPs, which give hints about the time evolution of the
high-dimensional phase space trajectories. Besides, a major
advantage of RPs is that they can also be applied to rather
short and even nonstationary data. Fig. 2 shows the RPs for
two distinct time windows corresponding to core and non-
core activities, respectively. Clearly, in the former case the
RP is able to identify state recurrences, which are visualized
in the form of shorter or longer diagonal and vertical line
segments, whereas in the later case, the absence of structure
in the associated time window is expressed in the form of
isolated points in the RP.

(a) (b)

Fig. 2. RPs of (a) core and (b) non-core activity segments.

The visual interpretation of RPs, which is often difficult
and subjective, is enhanced by means of several numerical
measures for the quantification of the structure and com-
plexity of RPs [20]. These quantification measures provide a
global picture of the underlying dynamical behavior during
the entire period covered by the HAR data. The temporal
evolution of RQA measures and the subsequent detection
of transient dynamics are enabled for each recorded data
stream by employing a windowed version of RQA. Doing
so, the corresponding quantification measures are computed
in small windows, which are then merged to form our feature

Fig. 3. Proposed RQA-based feature extraction and HAR architecture.

matrix. Furthermore, it is noted that the length of the sliding
window yields a compromise between resolving small-scale
local fluctuations and detecting recurrence structures located
farther away from the LOI. The following ten RQA measures
are utilized in order to form our feature matrix (ref. [21]
for the definitions): recurrence rate, determinism, average
diagonal length, length of longest diagonal line, entropy of
diagonal length, laminarity, trapping time, length of longest
vertical line, clustering coefficient, and transitivity. Finally, a
linear-kernel support vector machine (SVM) is applied on the
feature matrix for activity recognition. Fig. 3 shows the overall
architecture of our proposed RQA-based HAR system.

Estimation of embedding parameters: In our implemen-
tation, the optimal time delay τ is estimated as the first mini-
mum of the average mutual information (AMI) function [22].
Concerning the embedding dimension m, a minimal sufficient
value is estimated using the method of false nearest neighbours
(FNN) [23]. Furthermore, the maximum norm is used as our
selected distance metric for the construction of the RP, which
is defined as ‖x‖max = maxi=1,...,N |xi|, while a rule-of-
thumb is currently used to set the threshold ε = 0.2

√
m.

IV. PERFORMANCE EVALUATION

In order to evaluate the performance of our proposed RQA-
based HAR architecture, and compare against the motif-based
counterpart, we employ a publicly available dataset [7], which
includes leisure activities data for a group of six volunteers.
Each volunteer performs a single activity once a day over a
period of five days. A remarkable aspect of this dataset is that
the sampling rate varies, being higher during the target activity.
We particularly focus on three leisure activities, namely, “cy-
cling”, “playing the guitar” and “dancing flamenco”. These
activities are selected such that both periodic and intense
(in “cycling”), as well as sharp and delicate movements (in
“dancing flamenco” and “playing the guitar”), are examined.

The recorded data correspond to the acceleration measured
across the x-axis direction. The length of the non-overlapping
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Fig. 4. Confusion matrices for “cycling” (1st row), “dancing flamenco” (2nd
row) and “playing the guitar” (3rd row) activities, using motif discovery (left
column) and RQA (right column). Green boxes represent true positive (TPR)
and true negative (FPR) rates for class 1 (activity) and 2 (non-activity). Red
boxes correspond to false positive (FPR) and false negative (FNR) rates. Gray
boxes represent the precision and recall percentage (in green) and the error
rate (in red). Blue boxes contain the classification accuracy (in green) and
expected error rate (in red).

sliding windows is set equal to 1 minute. Instead of performing
calculations on the entire dataset, we select a total of 100
consecutive windows, including time intervals before, during,
and after the target activity. The sensor data and metadata
of each activity during the five days of execution are con-
catenated and then divided randomly into training and testing
subsets containing 75% and 25% of the data, respectively.
For the comparison with the state-of-the-art motif-based SAX-
Sequitur scheme, the optimal parameters of the associated
algorithms are tuned using a nested cross-validation process.
Specifically, the word length is set equal to 4, the alphabet
size equal to 5, and the sliding window length to 80 samples.

The two HAR architectures are implemented in MATLAB,
on a desktop computer equipped with a CPU processor (Intel

Core i5-4590) clocked at 3.30GHz, and a 8 GB RAM, while
the CRP toolbox (http://tocsy.pik-potsdam.de/CRPtoolbox/)
has been employed for implementing the RQA. Lastly, a non-
linear classifier, specifically, a linear-kernel SVM, is applied
on the generated feature matrix in order to perform activity
recognition, which is addressed as a classification problem.
The choice of this classifier is motivated by its fast execution,
as well as by its high accuracy, especially in the case of a
large number of available features. We emphasize, though, that
the classification step is decoupled from the feature extraction
step, thus the overall performance of a HAR architecture can
be further improved by employing a better classifier.

The performance of our RQA-based HAR architecture is
compared against the SAX-Sequitur approach, in terms of
classification accuracy, F-score and memory complexity. As
illustrated in Fig. 4, our method outperforms significantly
the motif-based scheme for every activity. In particular, the
results corresponding to the “cycling” and “playing the guitar”
activity reveal that for periodic, yet complex activities, our pro-
posed RQA-based feature matrix is better capable of detecting
accurately the temporal variations of the underlying dynamical
system that generates the corresponding data, yielding a high
accuracy at the order of 92% and 93.6%, respectively.

TABLE I
F-SCORE FOR EACH TARGET ACTIVITY CLASS (CLASS 1)

F-score for target activity class (%)
Cycling Flamenco Guitar

Motif-based 39.29 46.88 74.80
RQA-based 88.10 79.19 94.29

TABLE II
NUMBER OF FEATURES EXTRACTED FROM 100 STREAMS

Number of features
Cycling Flamenco Guitar

Motif-based 2783 884 323
RQA-based 130 130 130

Moreover, Table I demonstrates that, although the motif-
based method achieved a 72.8% accuracy in correctly clas-
sifying a window as a core or non-core activity, however,
it yields a low F-score for class 1 (target activity). On the
contrary, our RQA-based method achieves a high accuracy,
while recognizing precisely the target activity, as demonstrated
by the high F-scores for both classes and the zero false
negative rate (FNR). This also verifies the capability of the
employed classifier to discriminate accurately between the
core activity and any other activity.

Considering the “dancing flamenco” activity, the motif-
based scheme performs rather poorly, achieving a total ac-
curacy of 45.6% and an F-score equal to 46.88% for the core
activity class. This result reveals a degraded performance of
the motif discovery scheme, which is not capable of detecting
accurately such a complex activity with varying sampling rate.
On the contrary, our RQA-based method yields a significantly
higher accuracy and F-score values, at the order of 75.2%
and 79.19%, respectively. This also verifies the efficiency of
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Fig. 5. Target activity motif representation in each streaming window for the three activities. Target activities appear in the windows 29-77, 30-89 and 13-85,
respectively.

our RQA-based feature extraction scheme to generate features
with an increased discriminating capability between the core
and non-core activity, yielding an FNR at the order of 4%.

Finally, Fig. 5 indicates that for the motif-based scheme,
the motifs referring to the target activity appear both in target
and non-target activity windows. Specifically, for the “dancing
flamenco” and “playing the guitar”, the low performance is
primarily due to the fact that these activities include various
irregular and complex motions, which are quite difficult to
capture via the extracted motifs. To this end, Table II indicates
that the number of features extracted by the motif-based
method not only differs significantly between the activities, but
is also much larger compared with our RQA-based approach.

V. CONCLUSIONS AND FUTURE WORK

In this work, we designed and implemented a HAR archi-
tecture based on a representation of wearable sensor data in
higher-dimensional phase spaces using the RQA method for
capturing the underlying dynamics of the data. The experi-
mental evaluation on real leisure data revealed the superiority
of our RQA-based framework in extracting and exploiting
the underlying temporal dynamics of the data generating pro-
cesses, resulting in significantly higher classification accuracy
for complex activities, when compared against a state-of-
the-art online motif discovery scheme based on symbolic
representations. An extension of this work will consider the
use of multidimensional (multichannel) HAR data based on
joint RPs and a multidimensional extension of RQA. We
expect that the incorporation of potential correlations and
joint dynamics between the multiple data streams will further
increase the overall classification accuracy.
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