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Abstract—Acoustic echo cancellation and system identification
in reverberant environments have been thoroughly studied in
the literature. Theoretically, in a reverberant environment the
Acoustic Impulse Response (AIR) relating the loudspeaker signal,
denoted reference, with the corresponding signal component
at the microphone, denoted echo, is of an infinite length and
can be modeled as an Infinite Impulse Response (IIR) filter.
Correspondingly, the echo signal can be modeled as an Auto
Regressive Moving Average (ARMA) process. Yet, most methods
for this problem adopt a Finite Impulse Response (FIR) system
model or equivalently a Moving Average (MA) echo signal
model due to their favorable simplicity and stability. Latter
methods, denoted FIR-Acoustic Echo Canceller (AEC), employ
an Adaptive Filter (AF) for tracking a possibly time-varying
system and cancelling echo. Some contributions adopt an IIR
system model and utilize it to derive a time-domain AEC and
accurately analyze the room behaviour. An IIR system model
has also been successfully applied in the Short Time Fourier
Transform (STFT) domain for the dereverberation problem.

In this contribution we consider an IIR model in the STFT
domain and propose a novel online AEC algorithm, denoted
IIR-AEC, which tracks the model parameters and cancels echo.
The order of the feed-back filter, equivalent to the order of
the Auto Regressive (AR) part of the echo signal model, can
be designed to fit the acoustic model and the order of the feed-
forward filter, equivalent to the order of the MA part of the echo
signal model, is limited to a single tap, thereby requiring that
the STFT window is longer than the early part of the AIR. The
computational complexity of proposed IIR-AEC is comparable
to a Recursive Least Squares (RLS) implementation of FIR-
AEC. These methods are evaluated using real measured AIRs
drawn from a recording campaign and the IIR-AEC is shown to
outperform the FIR-AEC.

I. INTRODUCTION

Acoustic echo cancellation is a fundamental and imperative func-
tion in speech processing applications, such as hands-free voice-
communication and speech recognition. Typically in these applica-
tions the system is comprised of one or more microphones and
loudspeakers. Microphone signals pick-up the desired speech sig-
nal of a human user as well as acoustic echo, denoting a signal
component which correspond to the signal emitted through the
loudspeakers, denoted as the reference signal, and propagating in
the environment [1]. Propagation of acoustic echo, affected by the
frequency response of the loudspeakers, the direct-path between
loudspeakers and microphones, reflections bouncing of objects and
boundaries of the environment and the frequency response of the
microphones, is intricate and time-varying. Sufficient cancellation of
the echo signal is crucial for enhancing the quality, intelligibility and
identifiability of desired speech.

In the current contribution reverberant environments are consid-
ered, in which the Acoustic Impulse Response (AIR) can be split

into two parts. The first part, denoted early, contains the direct path
and early reflections which are not very dense in time. The length
of this part is denoted mixing time and an approximation of it is the
square-root of the room volume [2]. The second part, denoted late,
contains high-order reflections, is infinitely long and can be modeled
as white-Gaussian process with exponentially decaying amplitude [2].

Adaptive filtering methods are widely used for cancelling echo [3],
[4], [5], [6]. These methods model the AIR as an all-zero system,
i.e., Finite Impulse Response (FIR) filter, thereby neglecting the
contribution of the infinite AIR tail. Throughout this paper, these
methods are referred to as FIR-Acoustic Echo Canceller (AEC).
The performance of the AEC, measured by the echo cancellation
level using the Echo Return Loss Enhancement (ERLE) metric, is
a concave function of the FIR-AEC model order. Performance is
impaired for too small model orders, since significant parts of the AIR
are neglected, and for too large model orders, since the estimation
error increases with the model order, assuming a finite and fixed
estimation period. The latter behaviour is explained in [4].

Another modeling approach for the AIR is using a combined poles
and zeros system model, i.e., Infinite Impulse Response (IIR) filter,
see [7], [8], [9], [10], [11]. This model is capable of capturing the
infinite AIR with a finite model order. The finite number of poles
defines the order of the feed-back filter, which captures the infinite tail
of the AIR and the finite number of zeros defines the order the feed-
forward filter. Haneda et. al. [12] adopts an IIR model and propose
a hybrid time-domain AEC which estimates the echo component by
combing filtered versions of the reference and microphone signals.
The authors claim that the filter that is applied to the microphone
signal and models the tail of the infinite response of the IIR can be
computed once per environment and is time- and space-invariant.
Mohammed et. al. [13] propose a time-domain IIR structure and
develop an efficient filter weights adaptation algorithm.

Time-domain IIR implementation does not outperform FIR coun-
terpart [14]. Moreover, time-domain implementation of an AEC is
computationally intensive due to the large model order. Alternative
Short Time Fourier Transform (STFT) domain implementations ben-
efit from the diagonalization property of Fourier transform, allowing
them to treat frequencies independently [4]. Nakatani et al. [15]
address the problem of dereverberating the desired speech signal,
and propose applying an adaptive IIR filter in the STFT domain
to the microphone signal, also denoted as the Weighted Prediction
Error (WPE) dereverberation method. The dereverberation problem
is more complicated than the echo cancellation problem, since it
aims to equalize the AIR blindly, without knowing the reference
signal. The WPE method obtains state-of-the-art performance for the
dereverberation task.

In the current contribution we adopt an IIR model for the AIR
in the STFT domain and suggest an online AEC which efficiently
estimates the model parameters. The paper is organized as follows.
The echo-cancellation problem is formulated in Section II, and com-
mon FIR-AEC solutions are presented in Section III. The proposed
IIR-AEC method is described in Section IV and is evaluated and
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compared to an FIR-AEC in Section V. The paper is concluded in
Section VI.

II. PROBLEM FORMULATION

Consider the echo-cancellation problem of a single channel system,
containing a single microphone and a single loudspeaker, situated in
a reverberant environment with Reverberation Time (RT) RT60. The
problem is first formulated in the time domain, in which signals and
systems, denoted by •, are sampled at a rate of fs. Let

d(t) , z(t) + v(t), (1)

denote the microphone signal at discrete time-index t, which is
comprised of a desired signal, denoted as v(t), and of an echo
component, modeled as

z(t) , h(t) ∗ x(t) (2)

where x(t) denotes the loudspeaker signal, also denoted as reference
signal, h(t) denotes the AIR and ∗ denotes the convolution operator.

Polack [2] models the AIR as a white-noise process multiplied by
an exponentially decaying envelope. This common model suggests
that the duration of the AIR is infinite. For practical considerations,
the AIR duration is typically assumed to be of the order of the RT,
i.e., RT60fs samples, and the signal is processed in the STFT domain.
Let K denote the length of analysis and synthesis windows and let
D denote the frame-shift. Following [16], for K < fsRT60, and
neglecting cross-band terms, the time-domain formulation in (1) can
be formulated in the STFT domain as:

d(n, k) = z(n, k) + v(n, k), (3)

where n and k denote the time-frame and frequency-bin indices and

z(n, k) =

Nh−1∑
i=0

h(i, k)x(n− i, k), (4)

x(n, k), v(n, k) and h(n, k) respectively denote the STFT of z(t),
x(t), v(t) and h(t). The length in frames of the echo transfer function
(ETF) in the STFT domain, denoted by Nh, can be approximated as:

Nh ≈ 1 +
fsRT60 −K

D
. (5)

The goal of echo-cancellation is to extract the desired signal v(n, k)
from the microphone signal d(n, k), given the reference signal
x(n, k). Hereafter, the frequency-bin index k is omitted for brevity.

III. BACKGROUND ON FIR-AEC
The echo-cancellation problem is comprehensively surveyed in

[3], [4]. Least-squares-based system identification methods (such as
Least Mean Squares (LMS) and Recursive Least Squares (RLS)) are
typically incorporated to estimate an FIR model of the ETF, defined
as ĥ(i) for i = 0, . . . , Nĥ. The reference signal is then filtered with
the estimated system to yield the estimated echo component at the
microphone, i.e.,

ẑMA(n) ,

N
ĥ
−1∑

i=0

ĥ(i)x(n− i). (6)

An estimate of the desired signal is finally obtained by subtracting
the estimated echo from the microphone signal

v̂MA(n) = d(n)− ẑMA(n). (7)

Arrange the Nĥ coefficients of ĥ(i) in a vector and define

ĥ ,
[
ĥ(0) · · · ĥ(Nĥ − 1)

]T
, (8)

where •T denotes the transpose operator.

The optimal FIR-AEC, also denoted as the Minimum Mean
Squared Error (MMSE) estimator, is designed to minimize the
variance of the estimated desired signal, i.e.,

ĥ , argmin
ĥ

{E
[
|v̂MA(n)|2

]
}. (9)

The solution to the echo-cancellation problem in (9) is the Wiener
Filter (WF) (see [3], [4])

ĥ =
(
R−1

xx rxd
)∗
, (10)

where the cross-correlation vector is defined as

rxd ,
[
rxd(0) · · · rxd(Nĥ − 1)

]T
, (11)

with

rxd(l) , E [x(n− l)d∗(n)] (12)

and the (i, j)-th element of the auto-correlation matrix Rxx is defined
as

Rxx (i, j) , E [x(n− i)x∗(n− j)] . (13)

For optimal performance, the length of the estimated ETF should
be larger than its practical length, i.e., Nĥ ≥ Nh. The selection of
the AEC parameters, namely K, D and Nĥ, affect the complexity,
delay and accuracy of its operation. Thanks to the diagonalization
property of the Fourier transform, estimating the ETF can be done
at each frequency independently. Optimal ETF identification involves
solving an Nĥ linear equations system per frequency [4] and implies
a computational complexity of O (Nĥ) for a gradient-descent based
LMS implementation or O

(
N2

ĥ

)
for an RLS implementation. Min-

imizing the computational complexity is attained by increasing K,
such that ETF length is minimized and reaches its asymptotic value
of Nĥ = 1. The latter complexity minimization is obtained at the
cost of increasing the algorithmic delay, which is K. Moreover, as
the residual echo due to system mismatch increases linearly with the
model order Nĥ, see [4], it is desirable to select Nĥ = Nh, however,
this requires obtaining an estimate of the RT.

In various applications, such as communication or hearing aid
systems, the maximal algorithmic delay is constrained. In these
cases, one can employ a Multi-Delay Filtering (MDF) technique
[17]. The latter method sets K such that its corresponding delay is
acceptable, and applies reduced computational complexity gradient
descent methods, thereby however, sacrificing convergence time of
the estimate. In other systems with fewer computational resources,
under-modeling the length of the ETF, such that Nĥ < Nh, is
inevitable, which results in leakage of late echo components into
the estimated desired signal. A block-diagram of the FIR-AEC is
depicted in Figure 1.

Figure 1: Block-diagram of FIR-AEC.
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IV. PROPOSED IIR-AEC ALGORITHM

As previously presented in Section I, the echo signal in a reverber-
ant environment can be modeled as an Auto Regressive (AR) process
in the time domain [2]. A similar model can be formulated in the
STFT domain, e.g., in the state-of-the-art dereverberation method that
was suggested in [15]. Here, we model the ETF as an IIR in the STFT
domain and re-formulate the echo component z(n) in (4) as an AR
process, i.e.,

zAR(n) = y(n) + q(n), (14)

where
y(n) , bx(n), (15)

is denoted the innovation process or the early component, assumed
to be a white-noise process, i.e., E [y(n)y∗(n− i)] = 0 for i 6= 0,
and the component

q(n) ,
Na∑
i=1

a(i)zAR(n− i) (16)

is denoted the feed-back component and the AR model parameters, or
equivalently the IIR parameters, are denoted a(i), for i = 1, . . . , Na.
Similarly to (3), the microphone signal is re-modeled as

d(n) , zAR(n) + v(n). (17)

Correspondingly, the desired signal is estimated by

v̂(n) , d(n)− ẑAR(n). (18)

We turn now to the computation of the IIR parameters a(i) for
i = 1, . . . , Na. Consider the cross-correlation between the early
component y(n−l) and the feed-back component q(n) for l > 0, i.e.,
ryq(l) , E [y(n− l)q∗(n)]. Substituting (16), the cross-correlation
can be formulated as

ryq(l) =

Na∑
i=1

a∗(i)ryz(l − i). (19)

where
ryz(l) , E [y(n− l)z∗AR(n)] . (20)

Considering (17) and since the reference signal and the desired signal
are statistically independent, note that ryd(l) , E [y(n− l)d∗(n)] =
ryz(l). Substituting the latter in (19) yields

ryq(l) =

Na∑
i=1

a∗(i)ryd(l − i). (21)

A linear set of Na equations, derived from (21) for l = 1, . . . , Na,
can be expressed in matrix notation as

ryq = Ryda
∗, (22)

where

ryq ,
[
ryq(1) ryq(2) · · · ryq(Na)

]T (23a)

a ,
[
a(1) a(2) · · · a(Na)

]T (23b)

and

Ryd ,


ryd(0) 0 · · · 0
ryd(1) ryd(0) · · · 0

...
...

. . .
...

ryd(Na − 1) ryd(Na − 2) · · · ryd(0)

 . (24)

The lower triangular matrix form of Ryd results from the causal
relation between zAR(n) and y(n) in (14), (15), (16), i.e., ryd(l) =
ryz(l) = 0, for l < 0.

The solution to (22) is given by

â =
(
R−1

yd ryq
)∗
, (25)

Note that since Ryd is a lower triangular matrix, the matrix inversion
in (25) can be avoided and (22) can be solved by back substitution
[18] with a computational complexity of O(N2

a ).
In practice, the signals y(n) and q(n) are not observable, and

the second order moments in (25) should be estimated. As presented
in Section III, b and y(n) are estimated by employing any standard
adaptive filtering technique for Nĥ = 1 (see [3], [4]) and substituting:

b̂ ,ĥ(0) (26a)

ŷ(n) ,ẑMA(n). (26b)

Extending the method to the generic ARMA case, i.e., Nĥ > 1 and
Na > 1, is out of the current scope and will be treated in future
work.

Considering (17) and (14), the feed-back component is estimated
by

q̂(n) = d(n)− ŷ(n). (27)

Finally, the required second-order-statistics are recursively esti-
mated by

r̂yq (l, n) =αr̂yq (l, n− 1) + (1− α) ŷ (n− l) q̂∗ (n) (28a)
r̂yd (l, n) =αr̂yd (l, n− 1) + (1− α) ŷ (n− l) d∗ (n) (28b)

with 0 < α < 1 being the recursive-averaging factor.
The estimated IIR filter in (25) might become unstable if any of its

poles reside outside of the unit circle. Instability in a certain frequency
will result in exponentially increasing energy which will eventually
corrupt the estimated desired signal. Instability can be avoided by
checking the positions of the IIR filter poles, however this operation
is computationally intensive. Here, we propose a simpler method
for detecting instability. Considering (18) and (14), we expect that
Var {v̂(n)} ≤ Var {d(n)− ŷ(n)}, where Var {•} stands for short-
term variance estimate. If the latter condition fails we reset the
estimated IIR filter coefficients. Consequently, the echo is temporarily
estimated by ẑAR(n) ≈ ŷ(n), until stability is reached.

A block-diagram of the proposed method is depicted in Figure 2.

Figure 2: Proposed IIR-AEC algorithm.
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V. EXPERIMENTAL RESULTS

We evaluate the proposed IIR-AEC algorithm, where the Moving
Average (MA) component b̂ is estimated using an RLS-based AEC,
and compare it to the an FIR-AEC, based on a multiple delay RLS [4],
using a database of room impulse responses [19], obtained from
the acoustic lab at Bar-Ilan University, Israel. The room dimensions
are 6m × 6m × 2.4m, and its acoustic properties can be controlled
by opening and closing various panels that are mounted on the
walls, ceiling and floor, thereby changing their reflectivity. Two room
configurations with RT60 = 360ms and RT60 = 610ms, and where
the distance between the loudspeaker and microphone is 0.72m are
evaluated.

The measured Energy Decay Curves (EDCs) [20] of the AIRs of
RT60 = 360ms and of RT60 = 610ms as well as linear fitted curves
which are theoretically expected from the exponentially decaying
amplitude model [2] are respectively depicted in Fig. 3. Also depicted
in Fig. 3 are the differences between the empirical EDCs and the
theoretically expected ones. The transition time between the early
and late reverberant parts of the AIR is approximated as the time in
which the difference becomes low and the theoretical exponentially
decaying EDC model matches the empirical one. Examining Figs. 3a,
3b, the early part of the RT60 = 360ms and of the RT60 = 610ms
room configurations is approximately 10ms and 100ms, respectively.

As a reference signal we use either a synthetic white Gaussian pro-
cess or a real speech signal, both sampled at 16kHz. The microphone
signal is constructed by filtering the reference signal by the AIR and
adding spatially-white noise, modeling the microphone noise, at an
Signal-to-Noise Ratio (SNR) of 80dB. The performance of the AEC
is measured by the ERLE metric, defined as

ERLE(n) ,
∑K−1

k=0 Var {z(n, k}∑K−1
k=0 Var {z(n, k)− ẑ(n, k)}

(29)

where the variance is estimated by recursive averaging over a window
of 60 samples, which is equivalent to ∼ 4ms.

The proposed IIR-AEC and the FIR-AEC are evaluated for orders
of Na = 1, .., 8 and Nĥ = 1, ..8 and STFT window lengths of
K = 512, 1024, 2048, 4096 for the RT60 = 360ms scenario, and of
K = 1024, 2048, 4096, 8192 for the RT60 = 610ms scenario. The
recursive averaging factor that is used by both algorithms is set to
α = 0.99.

The mean ERLE, averaged over time, for various STFT window
lengths and model orders for the case of RT60 = 360ms is depicted
in Fig. 4. As deduced from Fig. 3a, the late reverberation part of
the AIR begins after 10ms, therefore the IIR-AEC is expected to
model the AIR correctly for an STFT window that is longer than 160
samples. Clearly, the proposed IIR-AEC outperforms the FIR-AEC
for all model orders and STFT window lengths. For model orders
larger than 1 the improvement in ERLE is approximately 1.0dB,
1.5dB, 2.5dB and 4.5dB for STFT window lengths of 512, 1024,
2048 and 4096, respectively. Note that the ERLE of the FIR-AEC
begins to drop for higher model orders. This performance drop can be
related to the misadjustment noise which linearly increases with the
over-estimated model order [4]. Interestingly, the proposed IIR-AEC
does not seem to suffer from this performance drop when the model
order is over-estimated. A theoretical analysis of the performance of
the IIR-AEC is beyond the scope of the current contribution.

The mean ERLE, averaged over time, for various STFT window
lengths and model orders for the case of RT60 = 610ms is depicted
in Fig. 5. As deduced from Fig. 3b, the late reverberation part of the
AIR begins after 100ms, therefore the IIR-AEC is expected to model
the AIR correctly for an STFT window that is longer 1600 samples.
The proposed IIR-AEC outperforms the FIR-AEC for STFT windows
of K = 4096, 8192 and for all model orders. For model orders larger
than 1 the improvement in ERLE is approximately 3.5dB and 5.5dB
for STFT window lengths of 4096 and 8192, respectively. For STFT
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Figure 3: Measured Energy Decay Curves (EDCs), linear fits
and their differences for RT60 = 360ms (a) and for RT60 =
610ms (b).

window lengths of K = 1024, 2048 there is no clear advantage to
neither IIR-AEC or FIR-AEC.

The ERLE versus time of the proposed IIR-AEC and of the FIR-
AEC for a speech signal emitted in a room with RT60 = 360ms
is depicted in Fig. 6 for model order of 4 and STFT window
length of K = 2048. Evidently, the proposed IIR-AEC consistently
outperforms the FIR-AEC, and the average improvement is 10dB. In
our experiments, approximately 0.5% of the frequency-bins where
detected as instable and reset for preventing divergence.

VI. CONCLUSIONS

Adopting an IIR model for the AIR in the STFT domain, we
developed a novel online AEC, denoted IIR-AEC. The order of the
feed-back filter, denoted Na, can be designed to fit the acoustic
environment, whereas the order of the feed-forward filter is restricted
to a single tap. Consequently, the STFT window length should be
larger than the early part of the AIR. The model parameters are
recursively tracked with a computational complexity of O(N2

a ),
which is comparable to an RLS implementation of an FIR-AEC. The
proposed IIR-AEC and an FIR-AEC are evaluated using real AIRs
drawn from a recording campaign [19], and the proposed method
is shown to outperform the FIR-AEC. A theoretical analysis of the
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Figure 4: ERLE for proposed IIR-AEC and FIR-AEC with
RT60 = 360ms for model orders of 1, . . . , 8 and STFT window
lengths of K = 512, . . . , 4096.
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Figure 5: ERLE for proposed IIR-AEC and FIR-AEC with
RT60 = 610ms for model orders of 1, . . . , 8 and STFT window
lengths of K = 1024, . . . , 8192.

proposed method is beyond the scope of the current contribution and
will be presented in future work.
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