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Abstract—We consider a decision problem in which data are
unordered (unlabeled). Recent studies of this problem provide a
complete asymptotic characterization of the decision performance
for large data size, which is the solution of a convex optimization
problem. While this is fully satisfactory from a numerical
viewpoint, limited insight is offered because a closed-form explicit
expression for the decision performance is, in general, not
available. For binary observations and the challenging regime
of low-detectability, we derive an extremely simple analytical
solution, investigate its properties and discuss the obtained
physical insights.

Index Terms—Unlabeled detection. Unordered data. Permuted
observations. Error exponent function.

I. INTRODUCTION

A. Use Cases and Abstraction

1) Social Networks Use Case: An event happens and users
of a network take consequent actions, such as visiting specific
webpages, contacting friends on social networks, posting com-
ments, and so forth. Users’ profiles are known to a network
analyzer, meaning that he/she knows the probability of taking
each action as consequence of each possible event. The task
of the network analyzer is to discover the event but users’
actions are anonymized: The network analyzer has access to
the actions and knows their probabilities, but cannot make an
association between actions and users. Are the users’ profiles
still useful in this situation? And how to exploit them?

2) Sensor Networks Use Case: A sensor network is en-
gaged in a decision task. The nodes of the network collect
independent measurements about a phenomenon of interest
and deliver these measurements to a common fusion center,
where the decision is taken. But, either because of an external
attack or because of inherent system limitations related to
the nature and number of sensors, data arrive at the fusion
center without identity: they are unlabeled. There is no way
to relate data to sensors. Even though a complete statistical
characterization of the sensors’ observations is available at
the fusion center, it is by no means obvious how to proceed.
How much information is retained within the unlabeled data?
What is the performance of an optimal – but label-unaware –
decision maker?

3) Abstraction: The previous examples can be abstracted
as follows. Suppose there are H possible states of nature,
H0, . . . ,HH−1. A vector X = (X1, . . . , Xn) of independent
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observations is collected, where Xi is a random variable from
a finite alphabet X with known distribution Ph(Xi = x),
x ∈ X , under state of nature Hh, h ∈ {0, . . . ,H − 1}.
We now introduce a change of paradigm with respect to the
standard decision problems: Vector X = (X1, . . . , Xn) is not
available, and we only observe the set {X1 . . . , Xn}, which is
an unordered ensemble of values. Two natural questions arise:
How can we efficiently process the set for decision making?
And: What is the optimal decision performance, with special
emphasis on how much can be lost when labels are removed?

B. Related Work

Unlabeled (or unordered) signal processing is an emerging
paradigm, suitable to address challenging practical cases in
which the processing of a data vector x takes place without
knowing which entries of x correspond to which locations
within the vector. The roots of this paradigm trace back to a
standard problem in robotics, but in the signal-processing area
the pioneering formulation is due to Unnikrishnan, Haghighat-
shoar, and Vetterli [1], who addressed the following problem.
Let x = Ar be a linear transformation of vector r ∈ <k by
matrix A ∈ <n×k. The task is to recover vector r using the set
of values {x1, . . . , xn} in place of vector x = (x1, . . . , xn)T ∈
<n. Using a suitable matrix A, it is shown in [1] that recovery
is always possible provided that n ≥ 2k, and is possible by
using any subset of size 2k of the entries of x. Prompted
by these basic theoretical results (no practical algorithms
are provided in [1]), a number of recent contributions have
appeared, and several extensions of the problem have been
investigated; useful entry points are [2]–[6].

In the above references the focus is on signal reconstruc-
tion, in the sense that the goal is to recover r. Our focus,
instead, is on inference problems in which the unknown
state of nature rules the statistical distribution of a random
vector X = (X1, . . . , Xn), and we want to infer such state
by observing the unlabeled version of X, which is the set
{X1 . . . , Xn}. A series of articles address this scenario [7]–
[12]. In particular, assuming H = 2 possible states of nature,
the authors of [11] investigate the fundamental theoretical
limits of unlabeled decisions, and suggest practical algorithms
for solving the decision problem with affordable computational
complexity. In [11] the observation alphabet X is finite, but
otherwise arbitrary. For the special case of binary alphabets,
X = {0, 1}, the authors of [12] show that the detection algo-
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rithms proposed in [11] reduce to simple forms: the popular
GLRT (generalized likelihood ratio test) for some algorithms,
and a simple occurrence-counting decision rule for another.
The former (GLRT) is easily implementable (the combinatorial
matching between observations and distributions can be cir-
cumvented), but surprisingly is shown to perform worse than
coin-flipping for some problems of practical interest. The latter
(counting-based) performs poorly when the long-run average
limn→∞

1
n

∑n
i=1 Ph(Xi = 1) is almost the same under the

two hypotheses Hh, h = 0, 1. An algorithm founded on a CLT
(central limit theorem) approximation is suggested in [12] as
valid alternative for a large class of practical problems. Thus,
we see that [12] elaborates on the “practical” part of [11], in
the special case of binary observations. Likewise, the present
work elaborates on the “theoretical” part of [11]. The next
section describes how we elaborate on [11] and what are the
main differences with that article. An extended version of the
present work can be found in [13].

C. Contribution

For the standard decision problem in which X is available,
it is well-known that the two typical error measures – false
alarm and miss probabilities – of an optimal decision maker
converge exponentially to zero when the size n of vector X
diverges. The convergence rates cannot be arbitrary: if the false
alarm probability converges to zero at rate α, then the miss
probability converges to zero at a rate no larger than Ωlab(α),
where Ωlab(α) is a decreasing convex function known as
the error exponent [14]. For α arbitrarily small, the error
exponent reduces to the celebrated Chernoff-Stein exponent,
and enforcing the equal-rate condition α = Ωlab(α), the
error exponent reduces to the celebrated Chernoff information
number, see [15] for the definitions of these quantities. Any
of these performance measures represents a fundamental un-
beatable limit for the decision system. The main theoretical
achievement of [11] is to derive the correspondent error
exponent, denoted by Ω(α), for the case in which only the
unlabeled version {X1 . . . , Xn} of vector X is available. Thus,
in [11] the asymptotic performance of an optimal decision
maker with unlabeled observations is provided. The error
exponent function Ω(α) is given in [11] by an analytical
expression, but its form is by no means trivial and therefore
insight is not easily found. The theme of the present paper
is to explore the functional form of Ω(α) in the case in
which the observation alphabet is binary X = {0, 1}, with
focus on the challenging situation in which the decision
problem is “difficult”. This qualification means that the data
distributions under the two hypotheses are close to each other
in some sensible metric or, equivalently, that error probabilities
converge to zero exponentially but with small rate. For this
scenario we provide an approximate expression for Ω(α) that
is amazingly simple and from which immediate insight can
be gained. This represents our main contribution. We reiterate
that we only elaborate on the theoretical limit of the decision
system, while no attention is paid to practical strategies.

II. PROBLEM STATEMENT

The state of nature is either H0 or H1. We adhere to a
Neyman-Pearson formulation, in which no a-priori probability
is assigned to these states. Expectation and probability op-
erators are denoted by Eh and Ph, respectively, where the
subindex h = 0, 1, specifies the underlying state of nature.
We use capital letter to denote random variables and the
corresponding lowercase symbol for their realizations. Let
X = (X1, . . . , Xn) be a vector of independent random
variables over the alphabet X = {0, 1}, with pi = E1Xi and
qi = E0Xi, i = 1, . . . , n. When the state of nature is left
unspecified, we denote by ri such expectation, so that ri = qi
or ri = pi, respectively, depending on the value of h = 0, 1
in Hh. All throughout this article we assume ri 6= 0, 1,
∀i = 1, . . . , n, which rules out trivialities. A shortcut notation
for the sequence (r1, . . . , rn) is r1:n, and r1:∞ denotes its
infinite-sized version. We define r̄ = limn→∞

1
n

∑n
i=1 ri, with

similar definitions for q̄ and p̄. An alternative notation for long-
run averages is 〈r1:∞〉 = r̄.

The task is to decide between H0 and H1. Should the
vector X be observed along with reliable labeling information
(i.e., the standard situation), the test would be Hh : X ∼∏n
i=1 r

xi
i (1 − ri)

1−xi , for h = 0, 1. However, we do not
observe vector X = (X1, . . . , Xn), but only its unlabeled
entries, namely the set of values {X1, . . . , Xn}. Equivalently,
we observe one of the n! permuted version of X, and we do
not know which. Formally, we have:

H1 : X ∼
∏n
i=1 p

xπ(i)

i (1− pi)1−xπ(i) ,

H0 : X ∼
∏n
i=1 q

xπ(i)

i (1− qi)1−xπ(i) ,
(1)

where π(i) represents the unknown permutation. Let kX ∈
{0, 1, . . . , n} be the number of ones appearing in X. Since
identical entries of X are indistinguishable, upon observing
the set {X1, . . . , Xn} only

(
n
kX

)
out of the n! permutations

remains distinguishable. Still, estimating the unknown per-
mutation according to a maximum likelihood (ML) principle
seems at first glance a combinatorially complex problem, but
as pointed out in [12, Prop. 1], this is not so, and in fact a
GLRT approach is easily implementable. Now, in many cases
of practical interest the GLRT performs very well, and the
GLRT is often taken, without special concern, as being as
near optimal in a composite testing situation as possible [16].
However – and remarkably – decent performance by the
GLRT in the unlabeled case with binary data should not be
taken for granted, at least in the asymptotic setting n → ∞.
This can be intuitively explained by noticing that as n grows
(linearly) more data are available; but at the same time the
space over which the maximum is to be found for the ML es-
timate grows much faster (exponentially). Actually, finding an
easily-implementable asymptotically optimum decision maker
remains an open problem.

Observing the set {X1, . . . , Xn} is tantamount to observing
kX/n ∈ [0, 1] and, to solve test (1), the interval [0, 1] is
partitioned in two regions R0 and R1 such that R0∩R1 = ∅,
and R0 ∪ R1 = [0, 1]. If kX/n ∈ Rh, then the decision
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is made in favor of Hh, h = 0, 1. As performance figures
we consider the false alarm probability P0(H1) and the miss
probability P1(H0), where we used the simplified notation
Ph(Hk) = Ph(kX/n ∈ Rk). Since our focus is on the
asymptotic setting n → ∞, we consider the limits (if they
exist):

lim
n→∞

− 1

n
logP0(H1), false alarm rate, (2)

lim
n→∞

− 1

n
logP1(H0), miss rate. (3)

The larger these rates, the better the decision system performs.

III. RESULTS

For h = 0, 1, λ ∈ <, and ω ∈ (0, 1), let:

ψh(λ) = lim
n→∞

1

n

n∑
i=1

log
(
rie

λ + 1− ri
)
, (4a)

Ψh(ω) = sup
λ∈<
{λω − ψh(λ)} . (4b)

For α > 0, let us introduce the error exponent function:

Ω(α) = inf
ω∈(0,1): Ψ0(ω)<α

Ψ1(ω). (5)

The following result characterizes the asymptotic performance
of the unlabeled decision system.

PROPOSITION 1 (Adapted from [11, Th. 2]) Consider a bi-
nary hypothesis test with unlabeled binary data as formalized
in (1). For h = 0, 1, suppose that ψh(λ) in (4a) is finite and
twice continuously differentiable over λ ∈ <, with derivatives
that can be computed term by term under the summation sign.
Suppose that the decision region R0 is closed, and assume,
for α > 0: lim infn→∞− 1

n logP0(H1) ≥ α. Then: (i) for
any decision rule

lim sup
n→∞

− 1

n
logP1(H0) ≤ Ω(α), (6)

and (ii) there exists a decision rule attaining

lim
n→∞

− 1

n
logP1(H0) = Ω(α). (7)

Proof: See [11]. •
Let us introduce a further definition. For h = 0, 1, let

σ̄2
h = lim

n→∞

1

n

n∑
i=1

ri(1− ri), (8)

and note that 0 < σ̄2
h ≤ 1/4, where the lower bound follows

by the condition ri 6= 0, 1. Also, let [x]+ = max(x, 0). The
following theorem explores the challenging situation of p̄ close
to q̄, showing that the error exponent Ω(α) reduces to an
elementary, closed-form expression from which insight may
be gleaned.

PROPOSITION 2 (Regime of low-detectability) Suppose that
the assumptions of Proposition 1 hold. Suppose also that
Ψh(ω) in (4b) is twice continuously differentiable over ω ∈
(0, 1), and both Ψh(ω) and ψh(ω) have finite third derivative.

Then, for sufficiently small |p̄ − q̄|, the fundamental perfor-
mance indices can be approximated as follows:

Ω(α) ≈ ΩLD(α) =

([
|p̄− q̄| −

√
2σ̄2

0 α
]+)2

2σ̄2
1

, (9a)

Chernoff-Stein S ≈ (p̄− q̄)2

2σ̄2
1

, (9b)

Chernoff number C ≈ (p̄− q̄)2

2(σ̄1 + σ̄0)2
. (9c)

IV. DERIVATION OF THE FORMULAS IN (9)

A. Convex Analysis and Implications

Expressions (9b) and (9c) follow straightforwardly
from (9a): the former is ΩLD(0), and the latter is given by
ΩLD(α∗), where α∗ verifies α∗ = ΩLD(α∗). This is because
Chernoff-Stein exponent corresponds to the case in which
the false alarm probability goes to zero at vanishing rate
(actually, is less than some arbitrarily small ε > 0), while the
Chernoff number corresponds to the case in which the false
alarm and the miss probabilities converge to zero at the same
exponential rate [15].

Consider hence (9a). For h = 0, 1, we expand Ψh(ω)
from (4b) in a Taylor series around r̄, as follows:

Ψh(ω) = Ψh(r̄) + Ψ̇h(r̄)(ω − r̄) + Ψ̈h(r̄)
(ω − r̄)2

2
+o((ω − r̄)2). (10)

To deal with the individual summands of (10), we need
some facts about convex analysis. Note that ψh(λ) in (4a)
is finite and twice continuously differentiable by assumption,
and is strictly convex for λ ∈ < because infinite positively-
weighted sums of strictly convex functions preserve strict
convexity [17]. Recognizing Ψ(ω) as the Legendre transform
of ψ(λ), the properties of this latter imply the following [18],
where dot denotes derivative:

1) Ψh(ω) is strictly convex (and essentially smooth,
see [18]) on ω ∈ (0, 1). Recall that Ψh(ω) is twice
continuously differentiable by assumption.

2) ψh(λ) = supω∈(0,1) {λω −Ψh(ω)}, λ ∈ <.
3) Ψh(ω) = ω Ψ̇h(ω)− ψh(Ψ̇h(ω)), ω ∈ (0, 1).
4) ψh(λ) = λ ψ̇h(λ)−Ψh(ψ̇h(λ)), λ ∈ <.
5) ψ̇h(·) and Ψ̇h(·) are inverse functions of each other.
6) The variables in the two domains λ and ω are related

by the one-to-one continuous mapping defined by ω =
ψ̇h(λ), λ = Ψ̇h(ω).

7) When λ and ω are related as in 6), we have
ψ̈h(λ)Ψ̈h(ω) = 1 [19].

8) It holds:
...
Ψh(ω) = −

...
ψh(ψ̇−1

h (ω))/ψ̈3
h(ψ̇−1

h (ω)). This
property can be obtained by differentiating with respect
to ω the relationship in 7), and exploiting 6). Recall
that the third derivatives of ψh(·) and Ψh(·) exist by
assumption.
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Fig. 1. Graphical construction of ΩLD(α) from the two convex functions
Ψ0(ω) ≈ (ω − q̄)2/(2σ̄2

0) and Ψ1(ω) ≈ (ω − p̄)2/(2σ̄2
1). Two values of

α = α1,2 and the corresponding ΩLD(α1,2) are shown.

Coming back to (10), from (4a) we have ψ̇h(0) = r̄, which,
accounting for 6), gives Ψ̇h(r̄) = 0. Using the latter into 3),
yields Ψh(r̄) = 0. Exploiting 7) one gets Ψ̈h(r̄)ψ̈h(0) = 1,
and we also see by direct calculus that ψ̈h(0) = σ̄2

h. Thus, we
arrive at Ψh(ω) = (ω−r̄)2

2σ̄2
h

+ o((ω − r̄)2).
We know that Ψh(ω), for h = 0, 1, are two strictly convex

twice continuously differentiable functions attaining a unique
minimum at q̄ and p̄, respectively. As a consequence, the
values of ω involved in the definition of Ω(α) in (5) (when
this function is not zero) are those lying in the interval with
extremes p̄ and q̄, see Fig. 1 for a graphical representation.
For |p̄ − q̄| sufficiently small, higher order terms of (10)
can be neglected, and Ψh(ω), h = 0, 1, are approximated
by two parabolas. Then, the approximation of Ω(α) shown
in (9a) follows. With reference to definition (5) and Fig. 1,
suppose q̄ < p̄, and pick α > 0. The largest solution of
α = (ω − q̄)2/(2σ̄2

0), is ω∗ = q̄ +
√

2σ̄2
0α, which inserted in

(ω − p̄)2/(2σ̄2
1) gives

(
p− q −

√
2σ2

0α
)2
/(2σ̄2

1). Considering
the opposite case p̄ < q̄, and handing separately the values of α
for which Ω(α) = 0, we arrive at the final approximation (9a).

B. Error analysis

We now consider more in detail the error involved in
approximating Ψh(ω) by a parabola. By Taylor’s theorem [20,
Th. 5.19], we have Ψh(ω) = (ω−r̄)2

2σ̄2
h

+
...
Ψh(ξh(ω, r̄)) (ω−r̄)3

6 ,
where ξh(ω, r̄) is some point lying in the open interval
joining ω and r̄. A suitable expression for

...
Ψh(ω) is given

in property 8) of Sec. IV, and we arrive at:

Ψh(ω) =
(ω − r̄)2

2σ̄2
h

−
...
ψh(ψ̇−1

h (ξh(ω, r̄)))

ψ̈3
h(ψ̇−1

h (ξh(ω, r̄)))

(ω − r̄)3

6
. (11)

Recall that in the continuous mapping ψ̇−1
h (·), to ω = r̄ it

corresponds λ = 0. Therefore, for |p̄ − q̄| sufficiently small,

we can make ω close enough to r̄, such that the corresponding
variable λ is sufficiently close to zero. Then, differentiating
under the summation sign the function ψh(λ) in (4a) and
expanding in Taylor series around λ = 0 the resulting
terms, yields ψ̇h(λ) ≈ r̄ + σ̄2

hλ. The inverse relationship is
ψ̇−1
h (ω) ≈ (ω− r̄)/σ̄2

h, which reveals that when ω belongs to
the line joining q̄ and p̄, ψ̇−1

h (ω) belongs to the line joining
0 and ±|p̄− q̄|/σ̄2

h. Using this fact in the second summand at
the right-hand side of (11), we get: For ω lying on the line
joining q̄ and p̄,

εh=

∣∣∣∣∣
...
ψh(ψ̇−1

h (ξh(ω, r̄)))

ψ̈3
h(ψ̇−1

h (ξh(ω, r̄)))

(ω − r̄)3

6

∣∣∣∣∣≤
∣∣∣∣∣
...
ψh(λ)

ψ̈3
h(λ)

∣∣∣∣∣ |p̄− q̄|36
, (12)

where λ lies on the line joining 0 and ±|p̄ − q̄|/σ̄2
h. Expres-

sion (12) can be exploited for specific observation models, as
we show next by two examples.

1) r1:∞ modeled as uniform: Suppose that the entries
of r1:∞ are independent realizations of a uniform random
variable. Then:

ψ̈h(λ) = lim
n→∞

1

n

n∑
i=1

eλri(1− ri)
(rieλ + 1− ri)2

=

∫ 1

0

eλr(1− r)
(reλ + 1− r)2

dr =
eλ(λ+ 2) + e2λ(λ− 2)

(eλ − 1)3
, (13)

...
ψh(λ) = lim

n→∞

1

n

n∑
i=1

eλri(1− ri)(1− ri − rieλ)

(rieλ + 1− ri)3

=

∫ 1

0

eλr(1− r)(1− r − reλ)

(reλ + 1− r)3
dr

= 2e2λ 3 sinh(λ)− λ cosh(λ)− 2λ

(eλ − 1)4
, (14)

where the expressions with the integrals are obtained by
an application of the law of large numbers. Dividing (14)
by the third power of (13), expanding the result in Taylor
series around λ = 0, and neglecting the terms in λ3 gives,
−

...
ψh(λ)/ψ̈3

h(λ) ≈ 36
5 λ. Since σ̄2

h = 1/6, this yields:

εh ≤
6

5

(p̄− q̄)4

σ̄2
h

=
36

5
(p̄− q̄)4, (15)

where p̄ ≈ q̄ and one of these values is equal to 1/2.
2) Half r and half (1− r): Suppose that half the entries of

r1:∞ take value r and the remaining half take value (1 − r),
for some r ∈ (0, 1). Omitting the details for space reasons, in
this case we have

εh ≤
∣∣∣∣r(1− r)− 1/6

(r(1− r))3

∣∣∣∣ (p̄− q̄)4. (16)

V. DISCUSSION & EXAMPLE

The error exponent function ΩLD(α) given in (9a) has
the following properties. This function depends upon the
underlying distribution r1:∞ only through r̄ and σ̄2

h. Namely,
p1:∞ and q1:∞ play their role only through the four quantities
p̄, σ̄2

1 , q̄, σ̄2
0 . ΩLD(0) = (p̄ − q̄)2/(2σ̄2

1) (Stein-Chernoff
exponent). For α ∈

(
0, (p̄ − q̄)2/(2σ̄2

0)
)
, ΩLD(α) is strictly

decreasing in α, while for α ≥ (p̄− q̄)2/(2σ̄2
0) it is identically



Fig. 2. The error exponent Ω(α) and its approximation ΩLD(α) in the low-
detectability regime, for the four decision problems described in Sec. V.

zero. The error exponent ΩLD(α) is infinitely differentiable
and in the region where nonzero is strictly convex. Next, let
us fix r̄.

1) Most Detectable r1:∞: The most detectable sequence
r1:∞ is the one yielding the lowest value of σ̄2

h, which is zero, a
case which we have excluded. So, let us consider instead σ̄2

h =
γ(1 − γ) < γ, for some small γ > 0. This can be achieved,
for instance, by the sequence (1 − γ, 1 − γ, . . . , γ, γ, . . . )
containing the fraction β of values (1 − γ) and the fraction
(1 − β) of values γ. For any γ < min(r̄, 1 − r̄), choosing
β = r̄−γ

1−2γ gives 〈(r1, r2, . . . )〉 = r̄.
2) Least Detectable r1:∞: To the other extreme, the least

detectable sequence r1:∞ is that with larger σ̄2
h, compatible

with the prescribed r̄. It can be seen (not shown for space rea-
sons) that this maximum is obtained when r1:∞ = (r̄, r̄, . . . ),
which of course implies σ̄2

h = r̄(1 − r̄). Thus, the least
detectable case is when data are iid.

A. Example
We conclude with an example. Let m(p̄) and m(q̄) denote,

for short, the most detectable sequences for prescribed values
of p̄ and q̄, respectively. Likewise, let `(p̄) and `(q̄) denote
the least detectable sequences, with γ also assigned. In Fig. 2
we set p̄ = 0.5, q̄ = 0.4, γ = 0.2, and consider four decision
problems, as follows:

case no. 1 2 3 4

H1 : `(0.5) m(0.5) m(0.5) `(0.5)

H0 : `(0.4) m(0.4) `(0.4) m(0.4)

The figure shows ΩLD(α) (solid lines) and Ω(α) (dots). Note
the accuracy of the approximation Ω(α) ≈ ΩLD(α).

VI. CONCLUSIONS

The error exponent for unlabeled detection Ω(α) provides
a complete characterization of the asymptotic decision per-
formance in the setting in which the data vector is observed

after an unknown shuffling of its entries. Unfortunately, the
analytical form of Ω(α) is involved and provides limited in-
sight. In the challenging situation of low detectability, namely,
when |p̄− q̄| is small, we show, by standard series expansions,
that the error exponent can be approximated by ΩLD(α),
which is given in elementary form, and from which it is easy
to understand how the system parameters (underlying data
distributions) determine the decision performance. Our charac-
terization of the error exponent provides easy-to-read answers
to the questions posed in the introduction by quantifying the
information retained within the unlabeled data.

REFERENCES

[1] J. Unnikrishnan, S. Haghighatshoar, and M. Vetterli, “Unlabeled sensing
with random linear measurements,” IEEE Transactions on Information
Theory, vol. 64, no. 5, pp. 3237–3253, May 2018.

[2] A. Pananjady, M. J. Wainwright, and T. A. Courtade, “Linear regression
with shuffled data: Statistical and computational limits of permutation
recovery,” IEEE Transactions on Information Theory, vol. 64, no. 5, pp.
3286–3300, May 2018.

[3] S. Haghighatshoar and G. Caire, “Signal recovery from unlabeled
samples,” IEEE Transactions on Signal Processing, vol. 66, no. 5, pp.
1242–1257, March 2018.

[4] A. Abid, A. Poon, and J. Zou. (2017, May 4) Linear regression with
shuffled labels. [Online]. Available: http://arxiv.org/abs/1705.01342

[5] G. Elhami, A. Scholefield, B. B. Haro, and M. Vetterli, “Unlabeled
sensing: Reconstruction algorithm and theoretical guarantees,” in Proc.
of the 2017 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP 2017), New Orleans, USA, March 5-9, 2017.

[6] A. Pananjady, M. J. Wainwright, and T. A. Courtade. (2017, April
24) Denoising linear models with permutated data. [Online]. Available:
http://arxiv.org/abs/1704.07461

[7] Z. Liu and J. Zhu, “Signal detection from unlabeled ordered samples,”
IEEE Communications Letters, vol. 22, no. 12, pp. 2431–2434, Dec.
2018.

[8] G. Wang, J. Zhu, R. S. Blum, P. Willett, S. Marano, V. Matta, and
P. Braca, “Signal amplitude estimation and detection from unlabeled
binary quantized samples,” IEEE Transactions on Signal Processing,
vol. 66, no. 16, pp. 4291–4303, Aug. 2018.

[9] J. Zhu, H. Cao, C. Song, and Z. Xu, “Parameter estimation via unla-
beled sensing using distributed sensors,” IEEE Communications Letters,
vol. 21, no. 10, pp. 2130–2133, Oct 2017.

[10] S. Marano, V. Matta, P. Willett, P. Braca, and R. Blum, “Hypothesis
testing in the presence of Maxwell’s daemon: Signal detection by
unlabeled observations,” in Proc. of the IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP 2017), New
Orleans, LA, USA, 5-9 Mar. 2017.

[11] S. Marano and P. Willett, “Algorithms and fundamental limits for unla-
beled detection using types,” IEEE Transactions on Signal Processing,
vol. 67, no. 8, pp. 2022–2035, Apr. 2019.

[12] ——, “Making decisions with shuffled bits,” in Proc. of the 2019 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP 2019), Brighton, UK, 12–17 May, 2019.

[13] S. Marano and P. Willett, “Making Decisions by Unlabeled Bits,”
submitted to IEEE Transactions on Signal Processing, May 2019.

[14] R. Blahut, Principles and Practice of Information Theory. Addison-
Wesley, 1987.

[15] T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd ed.
New Jersey, USA: Wiley-Interscience, 2006.

[16] S. M. Kay, Fundamentals of Statistical Signal Processing, Volume II:
Detection Theory. Englewood Cliffs, New Jersey: Prentice Hall, 1998.

[17] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, UK:
Cambridge University Press, 2004.

[18] R. T. Rockafellar, Convex analysis. Princeton, NJ: Princeton University
Press, 1970.

[19] R. K. P. Zia, E. F. Redish, and S. R. McKay, “Making sense of the
Legendre transform,” American Journal of Physics, vol. 77, no. 7, pp.
614–622, Jul. 2009.

[20] T. M. Apostol, Mathematical Analysis, 2nd ed. Reading, Massachusetts:
Addison-Wesley Publishing Company, 1974.

2019 27th European Signal Processing Conference (EUSIPCO)


