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Abstract—In this paper we propose a parallel implementa-
tion of a Voronoi cell-based algorithm for the Shortest Vector
Problem for both CPU and GPU architectures. Additionally, we
present an algorithmic simplification with particular emphasis
on significantly reducing the memory usage of the implemen-
tation. According to our tests, the parallel multi-core CPU
implementation scales linearly with the number of cores used,
and also benefits from simultaneous multi-threading, achieving
a maximum speedup of 5.56× for 8 threads. The parallel
GPU implementation obtains speedups of 13.08×, compared
with the sequential CPU implementation. The acceleration of
this class of signal processing algorithms is a fundamental step
in the evolution of post-quantum cryptanalysis. Currently, the
best algorithms can take months to process for moderately low
dimensions.

Index Terms—Cryptography, Voronoi, Accelerators

I. INTRODUCTION

MODERN cryptographic systems (such as RSA [1], El-
Gamal [2] and others) are based on hard mathematical

problems, such as the factorization of large numbers and the
computation of discrete logarithms. However, these systems
were shown to be vulnerable, as factorization of large integers
is feasible in the presence of quantum computers [3], [4], [5].

Given this vulnerability, new types of cryptosystems have
been proposed since then, withstanding attacks even in the
presence of quantum adversaries. Lattice-based cryptosystems
are a very prominent type of cryptosystem for the so-called
post-quantum era. They support advanced primitives, such as
Fully Homomorphic Encryption, which allows for operations
to be implemented on encrypted data, without having to
decrypt it [6]. They are also relatively efficient and easy to
implement, and are believed to be secure in the presence of
adversaries with quantum computers [5].

Lattice-based cryptosystems rely on problems such as the
Shortest Vector Problem (SVP), the Closest Vector Problem
(CVP) and their variants, as they cannot be solved exponen-
tially faster on a quantum computer than on a traditional one.

A lattice L in Rn is the subgroup formed by all integer
linear combinations of a basis B, a set of linearly independent
vectors b1, ...,bm. It can be expressed by (1):

L(B) =

{
x ∈ Rn : x =

m∑
i=1

vibi, v ∈ Zm

}
, (1)

where m ≤ n is the rank of the lattice and if m = n, the
lattice is of full rank.

Even though non-integer lattices are possible, integer lattices
are normally used, which does not affect the hardness of
problems and integers are easier to handle computationally.

Figure 1a shows an example of a lattice in R2, with its
basis vectors (b1, b2) shown in red. Vector b3 is a linear
combination of the basis vectors, and its Euclidean norm is
smaller than b1. In this context, we will refer to this as a
shorter vector, i.e. b3 is shorter than b1. The process of making
lattice basis vectors shorter is called lattice basis reduction and
is used in a multitude of lattice-based algorithms.
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(a) A lattice in R2 and its
basis (b1,b2) in red.
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(b) A Voronoi cell in R2 (blue) and
its relevant vectors (red).

Figure 1: Example of a lattice and a Voronoi cell.

The SVP consists in computing the shortest non-zero vector
of a lattice in terms of its Euclidean norm. Similarly, the CVP
consists in finding the lattice vector closest to a given arbitrary
vector (we will call these target vectors, and the closest lattice
point to it, its solution vector).

II. PRIOR WORK

Voronoi cell-based algorithms received considerable less
attention than other classes of SVP-solvers. Two of the most
known works in this subject are those of Agrell et al. [7]
and Micciancio and Voulgaris [8]. To the best of our knowl-
edge, there are no known Voronoi cell-based parallel GPU
implementations. There is, however, substantial work on the
parallelization of other types of lattice-related solvers, such as
enumeration and sieving.

In regards to enumeration, Correia et al. proposed a parallel
CPU implementation of the Schnorr-Euchner SE++ algorithm,
achieving speedups up to 14× for 16 threads [9]. Hermans et
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al. presented a parallel GPU (CUDA) implementation of the
same enumeration algorithm, obtaining a speedup of 5× on
a GTX 280, compared to a sequential CPU implementation
[10]. Kuo et al. proposed a CPU + GPU version of Hermans’
et al. work, and were able to find the solution to the SVP
for a lattice in dimension 114 in less than two days, using 8
NVIDIA GPUs [11].

Milde and Schneider’s parallelized sieving algorithms,
which scale (almost) linearly for small thread counts (up
to 5) [12]. Ishiguro’s et al. work is based on Milde and
Schneider’s, improving the efficiency of the algorithm for high
thread counts [13]. Mariano et al. also proposed a parallel
implementation of GaussSieve, achieving linear speedups up
to 64 threads and generally improving upon the performance
of previously published works [14]. Recently, Bos et al. [15]
presented a parallel GaussSieve implementation, obtaining a
speedup factor of 2 compared to Mariano’s et al. previous
work [14]. The GuassSieve algorithm was also parallelized on
GPUs, with some success [16].

Mariano et al. also parallelized versions of the HashSieve
and LDSieve algorithms, in [17] and in [18], respectively. The
former reports speedups of up to 12× with 16 threads, and the
latter linear speedups for the same number of threads.

Our contribution is twofold: we decrease the memory usage
of the CPU implementation, by reducing the list of relevant
vectors from 2× (2n − 1) to 1 (the shortest relevant vector);
and we also propose parallel implementations of a Voronoi
cell-based algorithm, for both CPU and GPU architectures,
achieving linear speedups for the former, and further speedups
(compared to the CPU version) for the latter.

III. VORONOI CELL ALGORITHM FOR THE SVP

The Voronoi cell V of a lattice is, by definition, the set of
all points closer to zero than any other lattice point (we also
consider the border to be part of this set), as defined in (2).

V(L) = {x ∈ Rn : ||x|| ≤ ||x− v|| ∀ v ∈ L}. (2)

The vectors of the minimum set required to fully describe the
Voronoi cell of a lattice are called Voronoi relevant vectors
and this set has 2× (2n− 1) vectors, at most. A lattice vector
r is relevant if V and V + r share a non-empty boundary.
Figure 1b shows an example Voronoi cell of a lattice in R2,
and its relevant vectors. A solution to the SVP is given by a
shortest relevant vector.

The “Relevant Vectors” algorithm, by Agrell et al., is used
to compute the relevant vectors of an arbitrary lattice, and runs
on exponential time. The algorithm can be split into four steps,
which we now describe briefly. For more detail, we refer the
reader to [7]. First, the target vectors that will be later used by
a CVP solver are generated. Second, the coordinate system of
the input data is modified (we refer the reader to [7] for more
details on the reasoning behind this step). Third, the lattice
basis and the target vectors are fed into an enumeration-based
CVP solver. This enumeration algorithm is based on Schnorr
and Euchner’s algorithm, and gets its name from the fact that
it enumerates all lattice points inside a certain radius [19]. In

Function AllClosestPoints
Input: Matrix M, matrix H, matrix Q, vector s
Output: List of vectors X

1 Compute x = sQT ;
2 U = Decode(H, x);
3 Compute γ as the lowest value ||uM− s|| for all u ∈ U;
4 Compute X as all {uM : u ∈ U, ||uM− s|| = γ}
5 return X

this paper we adopt the nomenclature of [7], and refer to this
step as the decode procedure. Finally, the output of the decode
step is converted back to the original coordinate system and,
if the result is valid, i.e. if it is indeed a relevant vector, stored
in a list.

Practically, it is desirable to start by reducing the ba-
sis, in order to increase performance and the numerical
stability of the algorithm. This is accomplished by means
of a Lenstra-Lenstra-Lovász (LLL) [20] or Block Korkine-
Zolotareff (BKZ) [19], [21] reduction. The si, i = 1, ..., (2n−
1) target vectors of the basis M are then generated and stored
in list T V , according to (3).

T V(M) =
{

s = zM : z ∈ {0, 1/2}n − {0}
}

(3)

After the target vector generation and input data pre-
processing stages, the decode procedure is then executed,
resulting on the list of vectors U, which is then processed
according to (4), resulting in the list of vectors X.

γ = min
{
||uM− s|| for all u ∈ U

}
X =

{
uM : u ∈ U, ||uM− s|| = γ

} (4)

If the list X contains 2, and only 2 vectors, then the result
of the decode procedure is valid, and the vectors are added to
the list of Voronoi relevant vectors N (a valid result yields 2
vectors that are symmetric to each other and, therefore, have
the same norm). In practice, because the vectors are symmetric
and of equal norm, we store only one of them, thus requiring
half the memory space for this list.

The pseudo-code of our baseline (CPU sequential) imple-
mentation of the algorithm is shown in Algorithm 1.

Next we describe the main strategies used to perform the
parallelization of the algorithm.

IV. VORONOI CELL PARALLELIZATION

We parallelized Algorithm 1 with OpenMP compiler direc-
tives for the CPU, and OpenACC compiler directives for the
CPU and GPU. These directives were applied to the main loop
of the algorithm (line 6 of Algorithm 1). Each iteration of the
main loop, where target vector generation and decoding take
place, is completely independent from one another, allowing
threads to run concurrently without data races and, therefore,
the need for synchronization. Due to the fact that the workload
may be unbalanced, i.e. not every decode takes the same
amount of time, we used OpenMP’s dynamic scheduler.
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Algorithm 1: Relevant Vectors
Input: Basis matrix B
Output: Relevant Vectors N

1 M = Reduce(B); /* for example, using the LLL
algorithm */

2 [Q, R] = QR decomposition of M;
3 G = RT ;
4 H = G−1;
5 N = ∅;
6 forall vectors s ∈ T V do
7 X = AllClosestPoints(M, H, Q, s);
8 if |X| = 2 then
9 N = N

⋃
{2x− 2s : x ∈ X};

10 return N

The memory usage of the Voronoi algorithm is significantly
low, with the exception of the matrix that holds the relevant
vectors. This structure grows exponentially with the dimension
of the lattice basis. Given the fact that we are merely interested
in the solution to the SVP, we implemented a mechanism to
store only the shortest relevant vector found. This introduces
the need for some synchronization between threads but, in
our tests, it had a negligible effect on the performance of
the algorithm, but with the benefit of decreasing the memory
footprint. This was achieved with OpenMP’s critical region
and is shown in Algorithm 2 (note that the data management
clauses — shared, private, etc. — are not shown for legibility
purposes). This memory optimization could not be applied to
the GPU implementation due to the fact that, so far, OpenACC
does not provide a critical construct. The memory savings
achieved with this approach depend on lattice dimension n
and can be quantified by (5).

Memory Savings =
8× (2n − 1)× n

4× n
= 2× (2n − 1)

= 2n+1 − 2

(5)

OpenACC is similar to CUDA in regards to GPU thread
management. The control is provided to the user by means
of the number of gangs, workers and vector length, which are
equivalent to CUDA’s number of blocks, warp size and threads
per block, respectively. In our implementation, addressed in
Algorithm 3, we used a vector length L (threads per block) of
128 and the number of gangs T (number of blocks) depends
on the size of the problem, given by (6).

T =

⌈
Number of Target Vectors

L

⌉
(6)

This launch configuration results in a kernel where each thread
decodes a single target vector (see Figure 2). However, this
also means that some structures must be private to each thread,
thus increasing the memory usage of the OpenACC implemen-
tation. Note that, although the list that holding the relevant
vectors is not as small as in the OpenMP implementation,

Figure 2: Execution flow of the OpenACC kernel for blocks
processing L threads in parallel.

Algorithm 2: OpenMP Parallel Relevant Vectors
Input: Basis matrix B
Output: Relevant Vectors N

1 M = Reduce(B); /* for example, using the LLL
algorithm */

2 [Q, R] = QR decomposition of M;
3 G = RT ;
4 H = G−1;
5 N = ∅;
6 min norm = ∞;

7 #pragma omp parallel for
8 forall vectors s ∈ T V do
9 X = AllClosestPoints(M, H, Q, s);

10 #pragma omp critical
11 if |X| = 2 then
12 if ||2x− 2s|| < min norm then
13 min norm = ||2x− 2s||;
14 N = {2x− 2s : x ∈ X};

15 return N

it did not mean much, memory-wise, for the dimensions we
tested.

Besides the parallelization of the algorithm, and in regards
to memory management, we use a single large array instead
of an array of arrays for storing each matrix. This requires the
use of special indexing notation, but decreases allocation and
deallocation time, and improves memory locality.

V. EXPERIMENTAL RESULTS

The tests shown in this section were carried out in the
machines detailed in Table I. Machine A is running Ubuntu
16.04 x86 64, with kernel 4.13. Machine B is running Ubuntu
17.10 x86 64, with kernel 4.13. The clock frequency in paren-
thesis represents the maximum attainable frequency using
Turbo Boost technology. SMT stands for simultaneous multi-
threading and HT stands for hyper-threading. L1 cache is split
between instruction (i) and data (d) cache. All programs were
compiled with the -O3 and -march=native optimization
flag. The OpenACC GPU program was compiled with the
-acc flag, in order to enable OpenACC directives, and
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Algorithm 3: OpenACC Parallel Relevant Vectors
Input: Basis matrix B
Output: Relevant Vectors N

1 M = Reduce(B); /* for example, using the LLL
algorithm */

2 [Q, R] = QR decomposition of M;
3 G = RT ;
4 H = G−1;
5 N = ∅;
6 min norm = ∞;

7 #pragma acc parallel loop independent
8 forall vectors s ∈ T V do
9 X = AllClosestPoints(M, H, Q, s);

10 if |X| = 2 then
11 N = N

⋃
{2x− 2s : x ∈ X};

12 return N

Table I: Apparatus: Machine A was used for the GPU and
Machine B was used for the CPU runs.

Machine A (GPU) B (CPU)
CPU Intel Core i3 6100 Intel Core i7 740QM
Clock frequency 3.70 GHz 1.73 GHz (2.93 GHz)
Cores 2 4
SMT Yes (w/HT, 4 threads) Yes (w/HT, 8 threads)
L1 Cache 32 kB i + 32 kB d 32 kB i + 32 kB d
L2 Cache 256 kB 256 kB
L3 Cache 3 MB 6 MB
RAM 8 GB 8 GB

GPU NVIDIA GeForce
1060 GTX —

GPU Clock rate 1759 MHz —
GPU RAM 6 GB —
OpenMP
Compiler — g++ 7.2.0

OpenACC
Compiler

PGI Compiler
Suite 18.4

PGI Compiler
Suite 18.4

the -ta=tesla:cc60 flag, to generate code for a GPU
with compute capability 6.0. The compilation of the CPU
implementation using OpenACC is similar, with exception of
the -ta=multicore flag, to generate code for a multi-core
CPU instead.

The bases used in our tests were generated
using the SVP-Challenge’s lattice basis generator
(https://www.latticechallenge.org/svp-challenge/), compiled
with NTL version 9.3 (https://www.shoup.net/ntl/). Unless
otherwise stated, we carried out 10 runs per dimension
(seeds 0 through 9), and the results shown correspond to
the arithmetic average of those 10 runs. The bases were all
reduced with NTL’s LLL algorithm.

As previously mentioned, the OpenACC implementation
uses more memory than OpenMP’s, and it would be infeasible
to run a single thread per target vector for dimensions 20
or higher. Instead, each thread decodes two target vectors.
Moreover, the memory usage of the original implementation,
for dimension n = 20, is 168 MBytes for the structure that
holds the target vectors, while the optimized version drops this
usage to 80 Bytes. Note that, for the GPU implementation,

Figure 3: OpenMP and OpenACC CPU implementation using
1, 2, 4 and 8 threads on Machine B (Turbo Boost On),
and OpenACC GPU implementation on Machine A, lattice
dimensions 10 to 20.

enough memory must be allocated for the possibility that
all target vectors yield relevant vectors, due to the fact that
allocated memory remains unchanged during the main loop
of the algorithm.

Regarding scalability, and due to the fact that the effect
of Turbo Boost varies with the number of threads used, we
also tested our implementations with Turbo Boost turned off,
achieving linear speedups for higher dimensions (i.e. higher
workloads, where the overhead of thread creation is several
orders of magnitude lower than actual computation time), for
both OpenMP and OpenACC CPU implementations. Figure
3 shows the execution times of the OpenMP and OpenACC
implementations, with Turbo Boost enabled for all CPU runs.

The GPU implementation is able to outperform both the
OpenMP and OpenACC CPU ones for all dimensions shown,
with a maximum speedup of 13.08× for dimension 20, when
compared against the sequential CPU run. The execution times
of the OpenMP and OpenACC CPU implementations are
virtually identical for higher dimensions.

VI. CONCLUSIONS

The proposed parallel Voronoi cell-based approach with
an algorithmic simplification that reduces the memory usage
scales linearly with the number of CPU and GPU cores used.

The reported speedups and the quick learning curve of
the proposed OpenACC-based solution show that high-level
parallelization targeted for GPUs is easily within reach of the
signal processing community to engage in the world of HPC
for dealing with relevant compute-intensive problems.
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