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Abstract—In this paper, target detection is studied for a cloud
multiple-input multiple-output (MIMO) radar system, where
each receiver communicates with a fusion center (FC) through
a backhaul network. To reduce communication burden, local
measurements at each receiver are quantized before they are
sent to the FC. Under a bitrate constraint for each local sensor,
we derive the detection probability of the cloud radar and
analyze effects of the sampling rate and bits per sample on the
detection performance. The quantizer output is initially modeled
using direct analysis (DA), and then the Gaussian quantization
error approximation (GQEA) method is employed to facilitate
theoretical analysis. We verify that these two methods lead to
close enough detection performance for large enough number of
bits per sample. The tradeoff between the sampling rate and bits
per sample is presented analytically and numerically.

Index Terms—MIMO radar, quantization, detection, sampling
rate

I. Introduction

Cloud radar, where multiple receivers send local data to a
fusion center (FC) via a backhaul communication network,
has been studied in [1] and [2] for code vector optimization
with a single transmitter. The work in [3] extends the study on
cloud radar to the MIMO case with multiple transmitters and
multiple receivers, and parameter estimation performance has
been presented. To reduce communication burden, the local
data are usually quantized [1], [3] before being sent to the
FC. It has been shown that when the other system parameters
are fixed, increasing the number of bits per sample improves
the estimation performance [3]. In this work, we discuss the
target detection problem for the cloud MIMO radar.

Considering that in the cloud radar, a large number of local
sensors may communicate with the FC wirelessly, the backhaul
capacity associated with a local sensor-to-FC path is limited,
so that the bitrate allowed for each path must be limited [4].
The bitrate R equals the product of bits per sample b and
sampling rate fs, i.e. R = b fs. While higher sampling rate
and larger number of bits per sample are more favorable, the
limitation on bitrate implies a tradeoff between the sampling
rate and bits per sample. In this paper, we analyze the effects
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of the sampling rate and bits per sample on the detection
performance under a bitrate constraint.

The detection performance depends heavily on the quanti-
zation output. Two popular ways to model the quantization
output are the direct analysis (DA) [5], [6], [7], [8], [9], [10],
[11], [12], [13] and Gaussian quantization error approximation
(GQEA) [4], [14], [15], [16]. The DA method considers the
exact quantization process to model the quantizer output as
a discrete random variable. The GQEA method attributes the
quantization effect to the introduction of an additive Gaussian
error to the input, so that the quantizer output is modeled as the
input plus a Gaussian noise, leading to a continuous random
variable which is usually more tractable for further analysis.
In this work, we employ the DA method to compute the exact
detection performance, and then use the GQEA method for
comparison. We show that the detection performance obtained
from the GQEA method approaches that from the DA method,
as long as the bits per sample is large enough. Unlike most of
the existing work where the quantizer is applied to real data
[5], [6], [7], [8], [9], [10], [11], [14], [15], [16], we consider
the quantization of complex data, which is more appropriate
for many common baseband communication signals.

II. SignalModel

Consider a cloud MIMO radar system that has M transmit-
ters and N receivers, which are widely spaced. The m−th,
m = 1, ...,M transmitter and the n−th, n = 1, ...,N re-
ceiver are located at (xt

m, y
t
m) and (xr

n, y
r
n) respectively, in a

two-dimensional Cartesian coordinate system. The lowpass
equivalent of the signal emitted from the m−th transmitter is
√

E/Msm(kTs), where E denotes the total transmitted energy,
Ts is the sampling period, k ( k = 1, ...,K,K = dT fse, where
d·e means round up) is an index running over the different
time samples, fs is the sampling rate, and T is the observation
time. The signals transmitted from different transmitters are
assumed to be orthogonal and maintain orthogonality for the
delays shifts and Doppler shifts of interest [17]. The target,
if present, is located at (x, y) moving with velocity (vx, vy).
The signal received at receiver n contributed by the m−th
transmitter at time kTs is [17]

rnm[k] =

√
E
M
ςnmsm(kTs − τnm)e j2π fnmkTs + wnm[k], (1)
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where the clutter-plus-noise wnm[k] is assumed to be zero-
mean white complex circular Gaussian distributed with
E{wnm[k]w∗nm[k′]} = σ2

wδ[k − k′] for all k and k′ before and
after sampling1, E[·] denotes mathematical expectation. To
simplify the analysis, suppose the reflection coefficient ςnm

is a deterministic known parameter. The τnm represents the
time delay associated with the nm−th path and fnm represents
the Doppler shift of the received signal corresponding to the
nm−th path.

It is easy to see that rnm(k) is complex Gaussian with mean

µnm[k] =

√
E
M
ςnmsm (kTs − τnm) e j2π fnmkTs , (2)

and variance σ2
w. The real and imaginary parts of rnm[k] are

independent Gaussian distributed, Re {rnm[k]} ∼ N(µreal
nm,k,σ

2
nm),

and Im {rnm[k]} ∼ N(µimag
nm ,σ2

nm), where

σ2
nm =

1
2
σ2

w, µ
real
nm,k = Re {µnm[k]} , µimag

nm,k = Im {µnm[k]} , (3)

Re {·} represents an operator taking the real part of a complex
number and Im {·} represents the imaginary part accordingly.

III. Quantization under Constrained Bitrate

Under a bitrate constraint for each local sensor,

R = b fs (4)

is fixed, where b denotes the number of bits for each sample
and fs is the sampling rate. Next we discuss the detection
performance under certain b and fs.

A common approach to quantize complex data is to feed
its real and imaginary parts to two quantizers of the same
design separately [18], [19]. After rnm [k] is quantized, the
quantization output qnm [k] can be obtained

qnm[k] = Q {Re {rnm[k]}} + jQ {Im {rnm[k]}} , (5)

where Q {·} represents quantization of a real number. Denote
the quantized vector by q [k] =

[
q11 [k] q12 [k] · · · qNM [k]

]†
,

where the superscript “†” denotes transpose. The overall
quantized vector is

q=
(
q†[1] q†[2] · · · q†[K]

)†
. (6)

The local sensors can communicate with the FC through
a backhaul network, and the FC uses the quantized data to
complete the target detection. To simplify analysis, we assume
that this backhaul is ideal [2], [20]. Thus, the observation
vector received at the FC is

y=q. (7)

1The correlated clutter-plus-noise case will be analyzed in future work.

Therefore, under the H1 hypothesis (target present in the cell-
under-test) and the H0 hypothesis (target absent), the detection
problem at the FC is

H0 : y=q = (q11[1] q12[1] · · · qNM[K])†,
qnm[k] = Q {Re{wnm [k]}} + jQ {Im{wnm [k]}} ,

H1 : y=q = (q11[1] q12[1] · · · qNM[K])†,
qnm[k] = Q {Re{µnm [k] + wnm [k]}}

+ jQ {Im{µnm [k] + wnm [k]}} .

(8)

Next, we discuss the target detection for quantizing the
received signals in two ways, one using the DA method, and
the other GQEA method.

A. Direct analysis

We first analyze the quantization output directly, and assume
the output of the quantizer to input γ is

Q {γ} =


0 , γ0 < γ < γ1
1 , γ1 < γ < γ2
...
D − 1 , γD−1 < γ < γD

, (9)

where D = 2b is the number of quantized values. The
quantized observations are therefore

qnm[k] ∆
= qreal

nm [k] + jqimag
nm [k] = Q {Re {rnm[k]}} + jQ {Im {rnm[k]}}

Under two different hypotheses, the likelihood function of y
is

p (y|H0) =

N∏
n=1

M∏
m=1

K∏
k=1

p(qnm [k] |H0), (10)

p (y|H1) =

N∏
n=1

M∏
m=1

K∏
k=1

p(qnm [k] |H1). (11)

Based on (3) and (9) , it can be obtained that for dreal,k =

0, 1, · · · ,D − 1, dimag,k = 0, 1, · · · ,D − 1

p(qnm [k] |H0) = p(qreal
nm [k] ,qimag

nm [k] |H0) (12)

= p(qreal
nm [k] =dreal,k |H0)p(qimag

nm [k] =dimag,k |H0)

=

[
Q(
γdreal,k

σnm
) − Q(

γdreal,k+1

σnm
)
] [

Q(
γdimag,k

σnm
) − Q(

γdimag,k+1

σnm
)
]
,

where Q(·) is the complementary distribution function of the
standard Gaussian distribution defined as

Q (x) =

∫ ∞

x

1
√

2π
e−

t2
2 dt . (13)

Similarly, we can obtain

p(qnm [k] |H1) =

Q(
γdreal,k

−µreal
nm,k

σnm
) − Q(

γdreal,k+1 − µ
real
nm,k

σnm
)

 (14)

×

Q(
γdimag,k

−µ
imag
nm,k

σnm
) − Q(

γdimag,k+1 − µ
imag
nm,k

σnm
)

 .
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Then, the log-likelihood ratio of y is

L (y) =

N∑
n=1

M∑
m=1

K∑
k=1

ln

[
Q(

γdreal,k
−µreal

nm,k

σnm
) − Q(

γdreal,k+1−µ
real
nm,k

σnm
)
]

[
Q(

γdreal,k

σnm
) − Q(

γdreal,k+1

σnm
)
]

×

[
Q(

γdimag,k
−µ

imag
nm,k

σnm
) − Q(

γdimag,k+1−µ
imag
nm,k

σnm
)
]

[
Q(

γdimag,k

σnm
) − Q(

γdimag,k+1

σnm
)
] . (15)

Therefore, the detection probability can be obtained

PD = P (L (y) ≥ α|H1) , (16)

where α is the detection threshold determined by the false
alarm level PFA,

PFA = P (L (y) > α|H0) . (17)

To simplify the analysis and obtain the closed-form de-
tection probability for further theoretical analysis, we adopt
a uniform quantizer next. In this case, γ0= −∞, γD = ∞,
γd=[d − (D−1)/2 − 1]∆, d = 1, · · · ,D − 1, and ∆ is the
quantization step.

B. Gaussian quantization error approximation

Assuming the real and imaginary parts of the complex data
use the same uniform quantizer and the amplitude of values
is bounded within the interval [−Amax, Amax], the quantization
error for each part may be conveniently modeled as a zero
mean process uniformly distributed. When σnm > 0.25∆

(∆ = 2Amax/2b is the quantization step , σnm is the standard
deviation of the real or imaginary parts of rnm [k]), Gaussian
quantization error approximation can be safely adopted for
the quantized complex data in most practical cases [21] and
the variance of the quantization error is ∆2/12. Assume the
Gaussian approximation applies here, then after rnm [k] is
quantized, the quantization output qnm [k] can be modeled as

qnm[k] = Q {Re {rnm[k]}} + jQ {Im {rnm[k]}} = rnm[k]+εnm [k] ,

where εnm[k] is the quantization error which is a zero-mean
white complex Gaussian random process, E{εnm[k]ε∗nm[k′]} =
∆2

6 δ[k − k′]. Therefore, under two different hypotheses, the
likelihood function of y is

p(y|H0) =

N∏
n=1

M∏
m=1

K∏
k=1

p(qnm [k] |H0)

=

N∏
n=1

M∏
m=1

K∏
k=1

1
πσ2 e−

1
σ2 (qnm[k])H (qnm[k]),

p(y|H1) =

N∏
n=1

M∏
m=1

K∏
k=1

p(qnm [k] |H1)

=

N∏
n=1

M∏
m=1

K∏
k=1

1
πσ2 e−

1
σ2 (qnm[k]−µnm[k])H (qnm[k]−µnm[k]),

where σ2 = σ2
w+ ∆2

6 . The log-likelihood ratio of y is

LG (y) ∝
N∑

n=1

M∑
m=1

K∑
k=1

2Re
{
qH

nm [k] µnm [k]
}
− |µnm [k]|2. (18)

Based on (18), the test statistic is given by

TG =

N∑
n=1

M∑
m=1

K∑
k=1

Re
{
qH

nm [k] µnm [k]
}
, (19)

and

TG |H0 ∼ N
(
0, σ2

t

)
, TG |H1 ∼ N

(
µt, σ

2
t

)
, (20)

where

µt =

N∑
n=1

M∑
m=1

K∑
k=1

|µnm [k]|2, σ2
t =

N∑
n=1

M∑
m=1

K∑
k=1

σ2

2
|µnm [k]|2. (21)

Therefore, the detection probability can be obtained

PG
D = P (TG ≥ η|H1) = Q

(
η − µt

σt

)
= Q

(
Q−1 (PFA) −

µt

σt

)
,

(22)

where η is the detection threshold determined by the false
alarm level PFA,

PFA = P (TG > η|H0) = Q
(
η

σt

)
⇒ η = σtQ

−1 (PFA) . (23)

C. Trade-off Between Bits Per Sample and Sampling Rate
Substituting (21) into (22), we have

PG
D = Q

Q−1 (PFA) −

√√√√√√√√2
N∑

n=1

M∑
m=1

dT fse∑
k=1
|µnm[k]|2

σ2
w + 2

3
A2

max
4b

 . (24)

When fs or b is fixed, we can get the relationship between the
detection probability and b or fs.

It can be obtained from (24) that a higher fs contributes to
an improved detection performance, while a larger b lessens
the performance deterioration induced by quantization. Thus,
under a bitrate constraint, the sampling rate and bits per sample
involve a compromise. When the bitrate is fixed to R = b fs, the
detection probability PG

D can be transformed into a function of
the sampling frequency fs,

PG
D = Q

Q−1 (PFA) −
(
µt

σt

)
fs

 , (25)

where

(
µt

σt

)
fs

=

√√√√√√√√2
N∑

n=1

M∑
m=1

dT fse∑
k=1
|µnm[k]|2

σ2
u + 2

3
A2

max
4R/ fs

.

The optimal sampling rate f ∗s satisfies

∂PG
D

∂ fs

∣∣∣ fs= f ∗s =

∂Q
(
Q−1 (PFA) −

(
µt
σt

)
fs

)
∂ fs

∣∣∣ fs= f ∗s = 0. (26)

The optimal sampling rate is obtained according to (26) (that
maximizes the detection probability).

Similarly, we can get the optimal b.
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Fig. 1: PD for direct analysis and GQEA method for different
b for a cloud MIMO radar when sampling rate fs = 600Hz.
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Fig. 2: PD for GQEA method for different fs for a cloud
MIMO radar with M = 2 transmitters and N = 3 receivers.

IV. Simulation

In this section, the detection performance of the cloud
MIMO radar system is investigated via numerical results. To
define a general test set up that is easy to describe, assume
each transmit and receive (single antenna) station is located 70
km away from the origin. Assume the number of transmitters
and receivers are M = 2 and N = 3, and frequency spread
single Gaussian pulse signals are adopted for transmission

sm(kTs) = (
2

T 2 )1/4e(−π(kTs)2/T 2)e j2πm f∆kTs , (27)

where f∆ is the frequency offset between adjacent radar
transmit signals and T the pulsewidth. Set f∆ = 150Hz and
T = 0.01s. Suppose a target may be present at (150, 130)m
with velocity (25, 20)km/h. Define the signal to clutter-plus-

noise ratio as SCNR = 10log10(
N∑

n=1

M∑
m=1

E|ςnm|
2/(Nσ2

w)) and

σ2
w = 10−2. Set PFA = 10−3.
Fig. 1 plots the detection probability PD versus SCNR

for the direct analysis and GQEA method under different
quantization bits when fs = 600Hz. The results of direct
analysis is obtained by 5000 Monte Carlo simulations. The
unquantized results can be obtained from (22) by setting
∆ = 0. The figure shows that as the resolution increases,
both models provide similar results and tend to the PD for
the unquantized case. When the number of bits used by the
quantizer is large enough (b > 2), the result obtained by GQEA
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Fig. 3: PD versus fs for a fixed R = [900, 1800, 2700, 3600]
for a cloud MIMO radar.

method approaches to that obtained via direct analysis. When
b > 4, there is almost no loss in performance for quantization.
Fig. 2 plots the detection probability PD versus SCNR under
different fs when b = 4. It can be seen from Fig. 2 that as the
sampling rate fs increases, the detection performance becomes
better, while the gain of the detection performance due to
the increase of the sampling rate becomes smaller. Taken
together, Figs. 1 and Figs. 2 show that as b or fs increases,
the performance gain becomes smaller and smaller. Applying
such analysis to clould MIMO radar system, the number of
quantization bits or sampling rate needed2 can be predicted.

Fig. 3 shows the PD versus fs for a given bitrate R when
SCNR= 11dB. It can be seen from Fig. 3, the detection
probability PD increases as R increases, that is because the
higher the fs is, the better the detection performance is under
the same b. Under fixed R, the detection probability increases
first and then decreases with the increase of fs. Therefore,
there is a tradeoff between sampling rate and bits per sample
and the sampling rate corresponding to the optimal detection
performance may be larger than the Nyquist rate fN = 600Hz,
or smaller than the Nyquist rate. This method can be exploited
to predict where the tradeoff occurs for cloud MIMO radar.

V. Conclusions

In this paper, target detection was studied for a cloud
MIMO radar system using quantized measurements at the
local sensor. Under a bitrate constraint for each local sensor,
we derive the detection probability of the cloud radar and
analyze effects of the sampling rate and bits per sample on the
detection performance. The output of the quantizer is modeled
in two different ways. The resulting detection performance is
analyzed. The simulation results show that when the number
of bits used by the quantizer is large enough (b > 4), there
is almost no loss in performance for quantization and when
b > 2, the result obtained by the GQEA method tends to that
obtained via direct analysis. Under a fixed bitrate at the local
sensor, the optimal sampling rate is obtained, and there is a
tradeoff between the sampling rate and bits per sample.

2Theoretical analysis for the required number of quantization bits and
sampling rate will be provided in the journal version.
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