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Abstract—We propose a novel computational strategy, named
the adaptive localized Cayley parametrization technique for ac-
celeration of optimization over the Stiefel manifold. The proposed
optimization algorithm is designed as a gradient descent type
scheme for the composite of the original cost function and the
inverse of the localized Cayley transform defined on the vector
space of all skew-symmetric matrices. Thanks to the adaptive
localized Cayley transform which is a computable diffeomor-
phism between the orthogonal group and the vector space of the
skew-symmetric matrices, the proposed algorithm (i) is free from
the singularity issue, which can cause performance degradation,
observed in the dual Cayley parametrization technique [Yamada-
Ezaki’03] as well as (ii) can enjoy powerful arts for acceleration
on the vector space without suffering from the nonlinear nature of
the Stiefel manifold. We also present a convergence analysis, for
the prototype algorithm employing the Armijo’s rule, that shows
the gradient of the composite function at zero in the range space
of the localized Cayley transform is guaranteed to converge to
zero. Numerical experiments show excellent performance com-
pared with major optimization algorithms designed essentially
with retractions on the tangent space of the Stiefel manifold
[Absil-Mahony-Sepulcher’08, Wen-Yin’13].

Index Terms—Stiefel manifold optimization, orthogonal group
optimization, Riemannian manifold optimization, Cayley trans-
form, Anderson acceleration

I. INTRODUCTION

In this paper, we consider an optimization problem over the
Stiefel manifold St(p,N) = {W ∈ RN×p | WTW = I} :

minimize f(U) subject to U ∈ St(p,N), (1)

where f : RN×p → R is differential. This problem has
rich applications in data science including signal processing
and machine learning, such as nearest low-rank correlation
matrix problem [1], nonlinear eigenvalue problem [2], sparse
principal component analysis [3], 1-bit compressed sensing
[4], dimension reduction for ICA [5], face descriptor for
recognition [6] and improvement of generalization for deep
neural network [7]. However, the problem (1) is not simple at
all due to the non-convexity of St(p,N), which bears many
computational ideas to deal with St(p,N) for (1).

A major strategies [8]–[15] deal with St(p,N) as a Rieman-
nian manifold endowed with a Riemannian metric to build
optimization schemes in its tangent bundle TSt(p,N) :=∪

U∈St(p,N)({U} × TUSt(p,N)), where TUSt(p,N) stands
for Np− p(p+1)/2-dimensional tangent vector space whose
zero corresponds to U . Along these strategies, classical
optimization algorithms, e.g., the steepest descent method,
the Newton’s method and the conjugate gradient method,

designed originally on a vector space, have been extended
to those on the tangent spaces of St(p,N). At each step,
the extended algorithms try to update the current estimate
U ∈ St(p,N) of the optimal point ideally along the geodesic
on St(p,N) in the direction D determined on the tangent
space. However the computation of the geodesic requires
infinite calculations, its approximated map called retraction
R : TSt(p,N) → St(p,N) : (U ,D) 7→ RU (D) , which is
inherited two natures from the geodesic: (i) RU (0) = U and
(ii) d

dt

∣∣
t=0

RU (tD) = D, is proposed, e.g., with QR decom-
position/polar decomposition, the Euclidean projection [8],
[13], [14], and the Cayley transform [9], [13], [16]. These
strategies are realized by the following procedure: (i) De-
termine a search direction D ∈ TUSt(p,N); (ii) Apply a
retraction which assigns to the current estimate U ∈ St(p,N)
a new estimate on St(p,N) along the approximated geodesic
in the search direction D determined in (i). Although these
strategies can also be extended to optimization problems over
general manifolds, not necessary over the Stiefel manifold,
they do not seem to exploit inherently algebraic properties of
the Stiefel manifold, e.g., St(p,N) can be seen as a canonical
projection of the orthogonal group O(N) := St(N,N). This
situation suggests a possibility toward alternative powerful
strategy for optimization over the Stiefel manifold if we find
some ideas to exploit algebraic property of O(N).

A dense subset of O(N) can be parameterized in terms of
skew-symmetric matrices by using a diffeomorphism known
as the Cayley transform [17], [18] Φ : O(N) \ E → Q(N) :
U 7→ (I − U)(I + U)−1, and its inverse Φ−1 : Q(N) →
O(N) \ E : V 7→ (I − V )(I + V )−1, where Q(N) :=
{V ∈ RN×N |V T = −V } is the vector space of all skew-
symmetric matrices and E := {U ∈ O(N)|det(I +U) = 0}
is the set of all singular points of Φ. Based on the fact
that Q(N) constitutes a real vector space, gradient descent
type schemes including the steepest descent method and the
Newton’s method for the composite of f and Φ−1 defined
on Q(N), called the dual Cayley parametrization technique,
were introduced in [17] as algorithms specialized for (1) in the
case of p = N . The update of the schemes can be expressed
by Un+1 = Φ−1 (A (Φ(Un))), where A denotes the update
rule from Vn := Φ(Un) ∈ Q(N) to Vn+1 := A(Vn) :=
Φ(Un+1) ∈ Q(N). Any computational technique developed
for minimization of f ◦ Φ−1 over vector spaces, e.g., the
gradient descent type method and the Newton’s method, can be
applied as building blocks of the update rule A. However their
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numerical performances tend to slow down severely around E
due to the appearance of undesirable plateau [17].

In this paper, to overcome completely the weakness caused
by the set E, while preserving the advantage in [17], we
newly propose the adaptive localized Cayley parametrization
technique as an adaptive extension and acceleration of the
dual Cayley parametrization technique [17]. The proposed
adaptive localized Cayley parametrization is a time vary-
ing modification of [17] for adjustment of the Cayley type
parametrization itself in order for the point sequence not to
approach the modified singular set. Similar modifications of
the parametrization are found, e.g., in [19], where a measure of
proximity to a singular point of the standard Cayley transform
was introduced to judge whether a certain modification, called
”pivoting”, of Φ is to be applied or not, and in [9], where
Φ−1 is used as a retraction but their approach can also be
interpreted as a time varying modification, at every update of
the orthogonal matrix, of the parametrization in [17]. However
so far the existing strategies do not seem to have succeeded
yet in exploiting maximally the potential advantage hidden in
the translation of (1), achieved essentially by the dual Cayley
parametrization, into the simplified task of optimization over
the vector space. Motivated by these situations, in this paper,
we propose to combine a time varying modification of the Cay-
ley parametrization and powerful acceleration techniques [20]
including Anderson acceleration [21] (See II.C) which was
developed originally for fixed-point approximation and is ap-
plicable to optimization tasks but only over vector spaces. We
also present a convergence analysis, for the adaptive localized
Cayley parametrization for a gradient descent type algorithm
with the Armijo’s rule [22], that shows the gradient sequence
of the composite function at zero in the range of space of the
localized Cayley transform is guaranteed to converge to zero.
Numerical experiments in the scenarios of a joint diagonal-
ization for symmetric matrices and an eigenbasis extraction
demonstrate that the proposed adaptive extension with accel-
eration of [17] successfully avoids undesirable plateau and
enjoy dramatical improvement in the speed of convergence,
outperforming major optimization algorithms designed with
retractions on the tangent space of the Stiefel manifold.

II. PRELIMINARIES

A. Notation

Let IN×p ∈ RN×p stand for the first p-th columns of
the identity matrix I ∈ RN×N . Let SO(N) := {U ∈
O(N) | det(U) = 1}. σmin(X) stands for the smallest
singular value of X ∈ RN×N and o(ϵ) is a matrix-valued
function which satisfies limϵ→0

∥∥∥ o(ϵ)
ϵ

∥∥∥
2
= 0, where ∥ · ∥2

stands for the spectral norm. We also use ∥ · ∥ to denote the
standard Euclidean norm for vectors.

B. Dual Cayley parametrization techniques

The dual Cayley parametrization technique [17] was pro-
posed to solve (1) in the case of p = N :

minimize f(U) subject to U ∈ O(N). (2)

The idea of the technique is to regard the optimization problem
as optimization over the vector space Q(N) by parametrization
of the subset of O(N) with Q(N) using the Cayley transform
Φ. Although Φ can parametrize O(N) \ E ⊊ SO(N), can
not parametrize any subset of O(N) \ SO(N) = {U ∈
O(N)|det(U) = −1} = {UT |U ∈ SO(N)}, where
T ∈ O(N) \ SO(N). To parametrize also a subset of
O(N) \ SO(N), the dual Cayley parametrization [17] was
proposed.

Definition 1 (Dual Cayley parametrization).{
Φ−1 : Q(N) → O(N) \ E : V 7→ Φ−1(V )

TΦ−1 : Q(N) → T (O(N) \ E) : V 7→ Φ−1(V )T ,
(3)

where T ∈ O(N) \ SO(N) and T (O(N) \E) := {UT |U ∈
O(N) \ E} ⊊ O(N) \ SO(N).

Since (O(N)\E)∪T (O(N)\E) is dense in O(N), [17] for-
mulated an optimization problem over (O(N)\E)∪T (O(N)\
E) corresponding to (2) by translating the optimization further
into

find U∗(1) ∈ Φ−1

(
arg min
V ∈Q(N)

f̂1(V )

)

find U∗(2) ∈ T

(
Φ−1

(
arg min
V ∈Q(N)

f̂2(V )

))
,

(4)

where f̂1(V ) := f(Φ−1(V )) and f̂2(V ) := f(Φ−1(V )T )
for V ∈ Q(N). Since Q(N) is a vector space, standard
optimization techniques, e.g., the steepest descent method,
the Newton’s method, the conjugate gradient method, can be
applied to the optimization problem (4). Unfortunately, the
numerical performance of the technique tends to slow down
severely due to the appearance of undesirable plateau around
the singular points E.

C. Anderson acceleration

The Anderson acceleration [20], [21], [23] is a well-
established technique to accelerate Picard type iterative
schemes: xn+1 = g(xn) ∈ RM for finding a fixed-point
x⋆ ∈ RM of wide range of nonlinear operators g : RM →
RM . This remarkably simple acceleration is known to be very
effective [20], [23] for many algorithms using g : Id − γ∇J
with γ > 0 to minimize of J. Anderson acceleration is a
restarting technique of the Picard type update whose new
initial point is computed as xext :=

∑K−1
k=0 c⋆kxk, where

(xk)
K−1
k=0 are the K latest estimates and c⋆ is a mini-

mizer of ∥
∑K−1

k=0 ck(g(xk) − xk)∥, as an approximation of
∥g(
∑K−1

k=0 ckxk) −
∑K−1

k=0 ckxk∥, subject to
∑K−1

k=0 ck = 1.
Therefore we have to solve the approximated problem

find c⋆ ∈ arg min
cT1=1

∥Rc∥, (5)

where R = [∇J(x0) ∇J(x1) . . . ∇J(xK−1)]. However,
since R tends to become singular or nearly-singular even if
K is small, a Tikhonov type regularization technique has also
been discussed as regularized nonlinear acceleration (RNA)
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Algorithm 1 Regularized Nonlinear Acceleration [24] as an
Anderson type acceleration [21]

Generate a pair of sequences (xk)
K
k=1, (yk)

K−1
k=0 from (6)

R = [x1 − y0 x2 − y1 . . . xK − yK−1]

c⋆ = (RTR+λI)−11
1T(RTR+λI)−11 .

xext =
∑K

k=1 c
⋆
kxk

in [23], [24] of which a version is summarized in Algorithm 1,
where a pair of sequences (xn)

K
n=1, (yn)

K−1
n=0 generated by{

xn = g(yn−1)

yn = γn

γ xn +
(
1− γn

γ

)
yn−1.

(6)

III. OPTIMIZATION ALGORITHMS VIA ADAPTIVE
LOCALIZED CAYLEY PARAMETRIZATION

A. The mobility bound of the Cayley parametrization

To see the influence of the singular points of Φ in the
gradient type scheme algorithm in [17], we evaluate the
mobility at V as

∥Φ−1(V +ϵF )−Φ−1(V )∥2 ≤ 2∥ϵF ∥2
σ2
min(I + V )

+∥o(ϵ)∥2, (7)

where V , F ∈ Q(N), ϵ ∈ R. From this inequality, the upper
bound of the mobility is inversely proportional to the square
of σmin(I + V ) and its maximum is achieved by V = 0,
implying thus undesirable plateau hardly appears around 0.
Unfortunately, the dual Cayley parametrization technique [17]
can not obtain the estimate Vn ∈ Q(N) while keeping
σmin(I + Vn) small when V ⋆, which corresponds to the
optimal point U⋆, is located far away from 0.

B. Proposed algorithms

In the following, we present an extension of the Cayley
transform in order to keep the mobility large in optimization
algorithms for problem (2).

Definition 2 (Localized Cayley transform). For a given S ∈
O(N), the localized Cayley transform ΦS : O(N) \E(S) →
QS(N) centered at S is defined by

ΦS(U) := (S−U)(S+U)−1 (U ∈ O(N) \ E(S)) , (8)

where E(S) := {U ∈ O(N)|det(S + U) = 0} is the set
of all singular points of ΦS , and QS(N) := {ΦS(U)|U ∈
O(N) \E(S)} is also the set of all skew-symmetric matrices
but for parametrization of O(N) \ E(S).

Moreover, we give the inverse of ΦS is given in the
following lemma.

Lemma 1 (Inverse of the localized Cayley transform). The
localized Cayley transform ΦS centered at S ∈ O(N) is
diffeomorphic and its inverse mapping Φ−1

S : QS(N) →
O(N) \ E(S) is given by

Φ−1
S (V ) := (I − V )(I + V )−1S (V ∈ QS(N)) . (9)

Algorithm 2 Adaptive localized Cayley parametrization with
a steepest descent method at every K-th iteration

Choose U
(1)
0 ∈ SO(N) , U (2)

0 ∈ T (SO(N))

S
(t)
0 = U

(t)
0 (t = 1, 2)

for n = 0, 1, 2, . . . do
V

(t)
n+1 = V

(t)
n −γ

(t)
n ∇

(
f ◦ Φ−1

S
(t)
n

)
(V

(t)
n ) (γ

(t)
n ∈ [0,∞))

U
(t)
n+1 = Φ−1

S
(t)
n

(V
(t)
n+1)

if n mod K = 0 then
S

(t)
n+1 = U

(t)
n+1, V (t)

n+1 = 0
else

S
(t)
n+1 = S

(t)
n

end if
end for (t = 1, 2)

In a way similar to (7), we obtain

∥Φ−1
S (ΦS(U)+ ϵF )−Φ−1

S (ΦS(U))∥2 ≤ 2∥ϵF ∥2 + ∥o(ϵ)∥2
σ2
min(I +ΦS(U))

for any U ∈ O(N) \ E(S), which suggests that the upper
bound of the mobility ∥Φ−1

S (ΦS(U)+ϵF )−Φ−1
S (Φ(U))∥2 at

ΦS(U) is maximized by setting S := U to ensure ΦS(U) =
0.

Based on this fact, we propose the adaptive localized Cayley
parametrization technique: Un+1 := Φ−1

Sn
(A(ΦSn(Un)) for

(2), where A is the update rule from Vn := ΦSn
(Un) ∈

QSn
(N) to Vn+1 := A(Vn) := ΦSn

(Un+1) ∈ QSn
(N)

for finding Vn+1 ∈ QSn
(N) and Un+1 := Φ−1

Sn
(Vn+1)

to suppress f ◦ Φ−1
Sn

over QSn(N), equivalently f over
O(N) \ E(Sn), and Sn is updated to Un at every K-
th iteration. Actually, it is ideal to keep the upper bound
of the mobility the maximum, i.e., Sn is updated to Un

at every iteration, but it is expected that the upper bound
remains near the maximum if K is not large. Thanks to
the adaptive localized Cayley parametrization technique, any
optimization technique over a vector space can be employed
as the update rule A, and as a simplest example, we present
a steepest descent method for (2) in Algorithm 2, where
(i) U

(1)
n ∈ SO(N) and U

(2)
n ∈ T (SO(N)) are generated

simultaneously by using suitable stepsizes γ
(t)
n (t = 1, 2),

e.g., the Armijo’s rule (See Theorem 1) to achieve monotone
decreasing of f(U (t)

n ) (n = 1, 2, . . .) for t = 1, 2, and (ii) the
gradient is given by ∇

(
f ◦ Φ−1

S

)
(V ) = 2(W − WT) with

W = (I + V )−1S∇f
(
Φ−1

S (V )
)T

(I + V )−1.

Remark 1. A specialization of Algorithm 2 with K = 1
reproduces a Riemannian optimization technique for (1) with
the Cayley transform as a retraction [9]. We emphasize that
the strategies with K > 1 [17], [19] and with K = 1 [9]
have distinct difference in the sense that the former can
enjoy further special arts developed for optimization tasks
over a common vector space during K iterations (See, e.g.,
Algorithm 3) but the latter can not.

Moreover, to make the best of the advantage of the proposed
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Algorithm 3 Adaptive localized Cayley parametrization with
an Anderson type acceleration at every K-th iteration

Choose U
(1)
0 ∈ SO(N) , U (2)

0 ∈ T (SO(N)), γ ∈ [0,∞)

S
(t)
0 = U

(t)
0 , Y

(t)
0 = 0 (t = 1, 2)

for n = 0, 1, 2, . . . do
X

(t)
n+1 = Y

(t)
n − γ∇

(
f ◦ Φ−1

S
(t)
n

)
(Y

(t)
n )

if n mod K = 0 then
X

(t)
ext = RNA

(
(X)Kk=n−K+1, (Y )Kk=n−K , λ

)
U

(t)
n+1 = Φ−1

S
(t)
n

(X
(t)
ext )

S
(t)
n+1 = U

(t)
n+1, Y (t)

n+1 = 0
else
U

(t)
n+1 = Φ−1

S
(t)
n

(X
(t)
n+1)

S
(t)
n+1 = S

(t)
n

Y
(t)
n+1 =

γ(t)
n

γ X
(t)
n+1 +

(
1− γ(t)

n

γ

)
Y

(t)
n (γn ∈ [0,∞))

end if
end for (t = 1, 2)

parametrization with K > 1 in Remark 1, we also propose an
enhancement as Algorithm 3 of the parametrization technique
with an Anderson type acceleration, RNA [23], which can
be applied to optimization tasks but only to over a vector
spaces. Since both of these two computational ideas can be
implemented at every K-th iteration, the combined algorithm
in Algorithm 3 can enjoy excellent synergy effects (See
sec. IV).

Remark 2. The singular point set E(S) of ΦS is different
from E(S′) of ΦS′ for all S′ ∈ O(N) \ E(S). Moreover,
since the maximum of the determinant |det(S+Φ−1

S (V ))| =
2N

det(I+V ) is achieved at V = 0, S is ensured to locate away
from E(S).

Next, we present an extension of the adaptive localized Cay-
ley parametrization techniques for (1). To achieve this goal,
we use the canonical projection: Ξ : O(N) → St(p,N) : S 7→
SIN×p, for translating cost function f into h := f ◦ Ξ. The
problem (1) with p < N can be translated into minimization
of h over SO(N) because St(p,N) for p < N is a connected
manifold unlike O(N). Thus, the proposed parametrization
techniques can be applied to problem (1) for general case by
passing through Ξ.

C. Convergence Analysis

To establish a convergence analysis for Algorithm 2, we
employ the backtracking algorithm for stepsizes γ(t)

n to satisfy
the Armijo’s rule (See [22]).

Theorem 1 (Convergence Analysis of Algorithm 2). Suppose
that f : RN×N → R is differentiable and (U

(t)
n )∞n=0 (t = 1, 2)

are sequences generated by Algorithm 2 using the backtrack-
ing algorithm [22] for stepsizes. Then we have

lim
n→∞

∥∥∥∇(f ◦ Φ−1

U
(t)
n

)
(0)
∥∥∥ = 0. (10)

IV. NUMERICAL EXPERIMENTS

To demonstrate the performances of Algorithm 2 and Al-
gorithm 3, we consider two optimization problems with many
applications in data sciences. We compare Algorithm 2 and
Algorithm 3 with (a) the original dual Cayley parametrization
technique [17], which is equivalent to Algorithm 2 with
K = ∞, (b) the steepest descent methods for optimization
over a Riemannian manifold employing, as retractions, (b-1)
the Cayley transform [9], which is equivalent to Algorithm 2
with K = 1 (See Remark 2), and (b-2) QR decomposition [8],
called Algorithm 4 in this paper. Each stepsize of all algo-
rithms are determined by the backtracking algorithm [22]. A
parameter λ of Algorithm 3 for regularization is set as 10−17.
A. Joint diagonalization. We consider

minimize f(U) :=
10∑

m=1

off(U−1AmU) subject to U ∈ O(10),

where off(X) :=
∑

i̸=j x
2
ij , xij denotes the (i, j)-th entry

of X ∈ R10×10 and Am ∈ R10×10 (m = 1, 2, . . . , 10) are
obtained by U⋆ΛmU⋆−1 with U⋆ ∈ O(10) and a randomly
chosen diagonal matrix Λm ∈ R10×10. A fixed stepsize γ
of Algorithm 3 is set as 0.0005. To check the avoidance
of undesirable plateau and the performance for the proposed
algorithms, we consider the following two settings: (i) the
optimal point and the initial point are around singular set E
of Φ:

U⋆ :=

[
−I2 0
0 I8

]
, U0 :=

[
R(15π/16) 0

0 I8

]
and (ii) the optimal point and the initial point are far from E:

U⋆ :=

[
R(π/6) 0

0 I8

]
, U0 := I,

where R(θ) ∈ R2×2 stands for a rotation matrix of a given
angle θ.
B. Eigenbasis extraction. We consider

minimize f(U) := −Tr(UTAU) subject to U ∈ St(7, 500),

where A ∈ R500×500 is randomly chosen such that A is
symmetric (Note: Any solution of this problem is known to
be an orthonormal eigenbasis associated with the 7 largest
eigenvalues of A [8]). We also choose an initial point U0 ∈
St(7, 500) randomly. A fixed stepsize γ of Algorithm 3 is set
as 0.000001.

Results of our experiments of each algorithm for the joint
diagonalization with the above settings (i), (ii) and for the
eigenbasis extraction are illustrated respectively in Fig. 1,
Fig. 2 and Fig. 3. Fig. 1 shows that the proposed algorithms
(Algorithm 2 with K = 5 and Algorithm 3 with K = 5)
succeed in avoiding the undesirable plateau which is observed
in the original dual Cayley parametrization technique (Algo-
rithm 2 with K = ∞). Compared with Algorithm 2 with
K = 1 and Algorithm 4, Algorithm 2 with K = 5 in Fig. 1
and Fig. 2 shows better performance in the first scenario.
Fig. 3 shows that Algorithm 2 (K = 5) has competitive
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Fig. 1. The value of the cost function versus
the number of iteration for different algorithms
for the joint diagonalization with the setting
(i) the initial point and the optimal point are
around E.

Fig. 2. The value of the cost function versus
the number of iteration for different algorithms
for the joint diagonalization with the setting (ii)
the initial point and the optimal point are far
from E.

Fig. 3. The subtraction of the value of the
cost function for the optimal point from one for
each estimate versus the number of iteration for
different algorithms for eigenbasis extraction.

performance with Algorithm 2 (K = 1) and Algorithm 4 in
the second scenario. These results show that the prototype
algorithm, Algorithm 2, has at least competitive performance
with standard optimization techniques over Riemannian man-
ifolds, which suggests great potential for improvement of
the speed of convergence by introducing further advanced
techniques applicable over vector spaces. Indeed, we can
observe that Anderson type acceleration (Algorithm 3 with
K = 5) succeeds in accelerating dramatically Algorithm 2
with K = 5, and Algorithm 3 with K = 5 overwhelms the
others in all scenarios.

V. CONCLUSION

We presented a novel computational strategy, named the
adaptive localized Cayley parametrization technique for accel-
eration of optimization over the Stiefel manifold. The proposed
algorithm (i) is free from the singularity issue, which can
cause performance degradation, observed in the dual Cayley
parametrization technique [Yamada- Ezaki’03] as well as (ii)
can enjoy powerful arts for acceleration on the vector space
without suffering from the nonlinear nature of the Stiefel
manifold. Numerical experiments show that the proposed
algorithm outperforms major optimization algorithms designed
with retractions on the tangent space of the Stiefel manifold.
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