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Abstract—In this paper, we investigates the target localization
problem based on bistatic range measurements in multiple input
multiple output (MIMO) radar system with widely separated
antennas. Under the assumption of uncorrelated Gaussian dis-
tributed measurement noises, The maximum likelihood estimator
(MLE) is derived for this problem, which is highly nonconvex and
difficult to solve. Weighted least squares (WLS) and Semidefinite
programming (SDP) are two research directions for solving this
problem. However, existing studies can not provide a high-quality
solution over a large range of measurements noise. In this work,
we propose to add a penalty term to improve the performance of
the original SDP method. We further address the issue of robust
localization in the case of non-accurate transimitter/receiver
position. The corresponding Cramér Rao lower bound (CRLB)
is also derived. Simulation results show the superiority of our
proposed methods by comparing with other exiting algorithms
and CRLB.

Index Terms—Multiple-inputmultiple-output (MIMO) radar,
Target localization, Range measurements, Semidefinite program-
ming (SDP), Cramér-Rao Lower Bound (CRLB)

I. INTRODUCTION

Nowadays, multiple-input multiple output (MIMO) radar
systems have been widely used in military monitoring field
due to its advantages over traditional phased-array radar sys-
tems [1]–[4]. Specifically, MIMO radars have the ability to
jointly fuse the received signals at multiple receive antennas
using multiple transmit waveforms [5]. Generally speaking,
MIMO radar system can be classified into two categories,
that is, the colocated antennas (CLA) and the widely sepa-
rated antennas (WSA). The MIMO radar with CLA antennas
ultilizes waveform diversity, whereas in the WSA structure,
its performance gain mainly comes from the spatial diversity.
Both of these two structures have significant advantages in tar-
get detection and localization over conventional phased-array
radar systems. In this work, we focus on target localization
using the WSA structure.

Basically, there are two kinds of approaches for MIMO
radar localization, namely, direct and indirect localization.
In the direct form, the target position is directly estimated
by fusing the original received signals. Maximum likelihood
estimation (MLE) is one of the representative methods in direct
localization [6], [7]. The MLE is asymptotically optimal, but
the formulated ML optimization problem is highly nonlinear
and nonconvex. Although it can be solved iteratively by
using numerical methods, a significant computational effort is

involved. What’s more, the nonconvexity also implies multiple
local minima and hence an appropriate initialization is very
crucial. On the other hand, the indirect form divides the
localization procedure into two steps, i.e. range estimation
and position estimation. The former, estimating the sum
of transmitter-to-target and target-to-receiver distances from
the received signals, which is referred to as bistatic range
measurements. The latter procedure is to estimate the target
location from the bistatic range measurements. To achieve
this goal, MIMO target localization techniques using bistatic
range measurements can be divided into three categorizes:
ML [8], least squares (LS) based [9]–[12] and semidefinite
programming (SDP) based [13], [14]. As aforementioned, the
ML problem is very difficult to solve due to the existence
of multiple local minima. The LS based method linearizes
the observation equations by introducing auxiliary parameters
such that LS (WLS) based solutions can be easily obtained.
This type of methods are usually computationally efficient and
accurate when the measurement noise is small, but are very
susceptible to a large noise. The SDP-based method deals
with the nonconvexity of the ML problem by performing
semidefinite relaxation. As a result, a convex SDP problem
is obtained, which can be efficiently solved using the interior-
point methods. However, this class of methods require a tight
relaxation to guarantee an accurate estimate.

In this paper, the addressed localization problem belongs
to the indirect approach which assumes the bistatic range
measurements are obtained using other estimation methods.
Our contributions can be summarized as (i) we have proposed
an improved SDP method for target localization in MIMO
radar systems by introducing a penalty term in the objective
function; (ii) we have extended the proposed SDP method to
the localization scenario in which the antenna positions are
subject to errors. Also, the corresponding Cramér Rao lower
bound (CRLB) for this scenario is derived.

The rest of the paper is organized as follows. In Section II,
the target localization problem considered in this work is
formulated. In Section III, we first derive the SDP solution
for the localization scenario with accurate antenna positions,
then provide an extension for the localization case that the
MIMO system with the presence of antenna position errors.
In Section IV, simulation results are given to demonstrate the
effectiveness of the proposed estimators. Finally, section IV
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summarizes this paper.
The following notations are used through the paper. Upper

(lower) bold-face letters stand for matrices (vectors), respec-
tively. The E(·), ‖·‖, (·)T , (·)−1, trace(·), rank(·) and ⊗ stand
for the expectation, l2 norm, transpose, inverse, trace, rank and
Kronecker product operators, respectively. The 1 and I denote
the all-one vector and identity matrix (size indicated in the
subscript if necessary), respectively. The ith element of a and
(i, j) entry of A are represented as [a]i and [A]i,j , respectively.
Additionally, [A]i:j,k:l contains entries in the intersection of
the ith to the jth rows and the kth to the lth columns. The
diag(a1, a2, ..., ak) is a diagonal matrix with diagonal elements
a1, a2, ..., ak. blkdiag(·) denotes the block diagonal matrix.

II. PROBLEM FORMULATION

We consider the target localization problem in a noncoherent
MIMO radar system, which consists of M transmit and
N receiver antennas. For simplicity, we consider the two-
dimensional scenario, extension for the three-dimensional case
is straightforward. Let xtm = [xtm, y

t
m]T ,m = 1, ....,M ,

xrn = [xrn, y
r
n]
T , n = 1, ...., N and u = [x, y]T be the known

coordinates of the ith transmitter antenna, the jth receiver
antenna and the unknown target position, respectively. In
MIMO radar localization process, the transmit antennas send
a set of mutually orthogonal waveforms which are reflected by
the target and then collected at the receiver antennas. Denoting
τm,n as the time delay measurement from the mth transmitter
and the nth receiver, which is the sum of the signal propagation
time from the mth transmitter to the target and from the target
to the nth receiver. Let sm(t) be the low-pass equivalent of
the emitted signal from the mth transmitter. For non-coherent
processing where the receivers are not phase-synchronized, the
signal measured at the nth antenna, denoted by zn(t), can be
modeled as [6]

zn (t) =
M∑
m=1

αm,nsm (t− τm,n) + wn (t) , (1)

where αm,n represents the signal amplitude and wn (t) is
the zero-mean Gaussian noise. Assuming the time delays
{τm,n} have been estimated from the received signals using
the expectation-maximization method [15].

Subsequently, after multiplying by the wave propagation
speed, the total NM bistatic range measurments are collected
in a fusion center for estimating the position of the target. The
bistatic range measurments, denoted by {rm,n}, are

rm,n = Rtm +Rrn + εm,n,m = 1, ...,M, n = 1, ..., N, (2)

where Rtm = ‖xtm − u‖ and Rrn = ‖xrn − u‖ are the true
distances between the target and the mth transmitter and the
nth receiver, respectively. The term εm,n is the measurement
noise which is assumed to be independent and identically
distributed (i.i.d) Gaussian random variables with zero mean
and variance σ2. Given the MN bistatic range measurements
as well as {xtm} and {xrn}, the localization task is to find the
target position u.

III. PROPOSED SEMIDEFINITE PROGRAMMING APPROACH

This section will first present our improved SDP localization
approach under the assumption that the network knowledge
of the radar antenna positions is accurate. Then, extension
for the case of non-accurate antenna position as well as its
corresponding CRLB are derived.

A. Localization with accurate antenna position

Under the i.i.d Gaussian noise assumption in (2), the joint
conditional probability density function of the measurement
data {rm,n} is given as

p (rm,n|u) =
M∏
m=1

N∏
n=1

(
2πσ2

)−1/2

× exp
(
− 1

2σ2 (rm,n −Rtm −Rrn)
2
)

and the maximum likelihood estimation is

uml = argmax
u

p (rm,n|u) .

Then, uml can be written explicitly as

uml = argmin
u

(
M∑
m=1

N∑
n=1

(
rm,n −Rtm −Rrn

)2)
. (3)

The above optimization problem is nonlinear and noncon-
vex, consequently the optimal solution is hard to achieve. Next,
we will show that this cost minimization problem admits a
SDP relaxation problem and can be solved by solving and
rounding its SDP relaxation.

Stacking the MN bistatic range measurements and the dis-
tances {Rtm, Rrn} into r = [r1,1, ..., r1,N , ..., rM,1, ..., rM,N ]

T

and g = [Rt1, ..., R
t
M , ..., R

r
1, ..., R

r
N ]
T , respectively. Defining

three matrixes G = ggT , D = [IM ⊗ 1N ,1M ⊗ IN ] and

C =

[
DTD −DT r
−rTD rT r

]
.

With these notations, the objective function of (3) for mini-
mization can be rewritten as

trace

{
C

[
G g
gT 1

]}
. (4)

Notice that the objective function of (4) is a linear function
of both G and g and is convex. However, the constraints Rtm =
‖xtm − u‖, Rrn = ‖xrn − u‖ and G = gg, are nonconvex, the
solution remains difficult. Next, We will relax these constraints
into convex constraints as tighten as possible.

To begin, we introduce a dummy variable z = uTu. Then
the square of distance constrains which relates z and u are

(Rtm)
2
= z − 2uTxtm + (xtm)

T
xtm,m = 1, ...,M,

(Rrn)
2
= z − 2uTxrn + (xrn)

T
xrn, n = 1, ..., N.

(5)

We further notice that

[G]m,m = (Rtm)
2
,m = 1, ...,M,

[G]M+n,M+n = (Rrn)
2
, n = 1, ..., N.

(6)
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With the use of all developed constraints, the original opti-
mization problem is equivalent to the following formulation

min
G,g,z,u

{
trace

{
C

[
G g
gT 1

]}}
s.t.[G]m,m = z − 2uTxtm + (xtm)

T
xtm,m = 1, ...,M,

[G]M+n,M+n = z − 2uTxrn + (xrn)
T
xrn, n = 1, ..., N,

z = uTu,
G = ggT .

(7)
The above optimization problem is convex except the two

constraints z = uTu and G = ggT . These two nonconvex
constrains will be replaced by the inequality z � uTu and
G � ggT , respectively, to meet the convex specification.
Further, they can be written as linear matrix inequalities[

I2 u
uT z

]
� 0,

[
G g
gT 1

]
� 0. (8)

Now, the nonconvex optimization problem of (7) is approxi-
mated as a convex optimization problem

min
G,g,z,u

{
trace

{
C

[
G g
gT 1

]}}
s.t. [G]m,m = z − 2uTxtm + (xtm)

T
xtm,m = 1, ...,M,

[G]M+n,M+n = z − 2uTxrn + (xrn)
T
xrn, n = 1, ..., N,[

I2 u
uT z

]
� 0,[

G g
gT 1

]
� 0.

(9)
However, we note that the convex optimization formulation

of (9) is still prone to ambiguities. Specifically, [G]i,i and
[g]i represent (Rti)

2 (or (Rri )
2) and Rti (or Rri ) respectively.

From the minimization problem formulated in (3), we observe
that a large (Rtm +Rrn)

2 and a large (Rtm +Rrn) could yield
the same cost value as a small (Rtm +Rrn)

2 and a small
(Rtm +Rrn). In fact, it has been observed that the estimate of
[G]i,i always becomes very large while that of [g]i close to
zero. Therefore, we add a penalty term to avoid the ambiguity,
i.e. ηtrace (G), where η is the penalty coefficient. Note that,
as far as we known, the optimal selection strategy of η has not
been addressed so far. Thus, we choose the value of η based
on the previous work [16]. Finally, we formulate our proposed
SDP optimization problem as

min
G,g,z,u

{
trace

{
C

[
G g
gT 1

]}
+ ηtrace (G)

}
s.t. [G]m,m = z − 2uTxtm + (xtm)

T
xtm,m = 1, ...,M,

[G]M+n,M+n = z − 2uTxrn + (xrn)
T
xrn, n = 1, ..., N,[

I2 u
uT z

]
� 0,[

G g
gT 1

]
� 0.

(10)
In the optimization literature, there are readily available solvers
for finding the globally optimum SDP solution of (9), such as
SEDUMI, SDPT3 and CVX [17].

B. Localization with antenna position errors

In preceding development of the SDP target localization
algorithm, we have made the assumption that the antenna
positions are accurate. In fact, it is difficult to obtain precise
locations of the antennas due to imperfections of deployment,
measurement, and position updating. Therefore, we would like
to develop robust target localization algorithm in MIMO radar
systems.

In the presence of antenna position errors, our antenna
position observations are

x̃tm = xtm + εtm,m = 1, ...,M,
x̃rn = xrn + εrn, n = 1, ..., N,

(11)

where {εtm, εrn} are assumed to be i.i.d Gaussian noise with
zero mean variance δ2. Under the condition that the noises
{εm,n, εtm, εrn} are mutually independent, the joint conditional
probability density function of {rm,n, x̃tm, x̃rn} is give as

p (rm,n, x̃
t
m, x̃

r
n|X) =

M∏
m=1

N∏
n=1

(
2πσ2

)−1/2

× exp
(
− 1

2σ2 (rm,n −Rtm −Rrn)
2
)

×
M∏
m=1

(
2πδ2

)−1/2
exp

(
− 1

2δ2 (x̃
t
m − xtm)

2
)

×
N∏
n=1

(
2πδ2

)−1/2
exp

(
− 1

2δ2 (x̃
r
n − xrn)

2
)
,

(12)

where X = [u,xt1, ...,x
t
M ,x

r
1, ...,x

r
N ]. Maximizing (12) leads

to the ML solution of X, which can be equivalently written
as

Xml = argmax
X

{
M∑
m=1

N∑
n=1

1
σ2 (rm,n −Rtm −Rrn)

2

+
M∑
m=1

1
δ2 (x̃

t
m − xtm)

2
+

N∑
n=1

1
δ2 (x̃

r
n − xrn)

2

}
.

(13)

Comparing with (3), the weight factor of (13) can not be
ignored since σ2 is not necessarily equal to δ2. In order to
form a tight constraint in the later relaxation procedure, we
define five variables W = σ−1IMN , r̃ = Wr, D̃ = WD,

C̃ =

[
D̃T D̃ −D̃T r̃

−r̃T D̃ r̃T r̃

]
and Y = XTX. Thus, the optimization problem of (13) can
be expressed as

min
G,g,Y,X

{
trace

{
C̃

[
G g
gT 1

]}
+ t1 + t2

}
s.t. t1 = 1

δ2

M∑
m=1

(
[Y]1+m,1+m − 2(x̃tm)

T
[X]1:2,m+1

)
t2 = 1

δ2

M+N∑
n=M+1

(
[Y]1+n,1+n − 2

(
x̃rn−M

)T
[X]1:2,n+1

)
[G]m,m = [Y]1,1 − 2[Y]1,1+m + [Y]1+M,1+m,

m = 1, ...,M,
[G]n,n = [Y]1,1 − 2[Y]1,1+n + [Y]1+n,1+n,

n =M + 1, ...,M +N,
G = ggT ,
Y = XTX.

(14)

2019 27th European Signal Processing Conference (EUSIPCO)



Similar to (10), applying the relaxation procedure and adding
the penalty term, Our proposed SDP optimization problem
under radar antenna position uncertainties can be formulated
as

min
G,g,Y,X

{
trace

{
C̃

[
G g
gT 1

]}
+ t1 + t2 + ηtrace (G)

}
s.t. t1 = 1

δ2

M∑
m=1

(
[Y]1+m,1+m − 2(x̃tm)

T
[X]1:2,m+1

)
t2 = 1

δ2

M+N∑
n=M+1

(
[Y]1+n,1+n − 2

(
x̃rn−M

)T
[X]1:2,n+1

)
[G]m,m = [Y]1,1 − 2[Y]1,1+m + [Y]1+M,1+m,

m = 1, ...,M,
[G]n,n = [Y]1,1 − 2[Y]1,1+n + [Y]1+n,1+n,

n =M + 1, ...,M +N,[
G g
gT 1

]
� 0,[

Y XT

X I2

]
� 0.

(15)
The above optimization problem can be efficiently solved by
the CVX toolbox. Once we obtain the solution of X, the target
position estimate is readily given as û = [X]1:2,1.

To end this section, we would like to derive the CRLB
of the considered localization problem with antenna position
errors. Let z be a vector containing all available observations
{rm,n, x̃tm, x̃rn}, i.e.

z =
[
r1,1, ..., rM,N ,

(
x̃t1
)T
, ...,

(
x̃tM
)T
, (x̃r1)

T
, ..., (x̃rN )

T
]T
.

From the measurement model (2) and (11), we see that z is
Gaussian distributed with mean µ and covariance matrix V:

z ∼ N (µ,V) , (16)

where

µ =
[
Rt1 +Rr1, ..., R

t
M +RrN , (x

t
1)
T
, ..., (xtM )

T
,

(xr1)
T
, ..., (xrN )

T
]T

V = blkdiag
{
σ2IM×N ,V

t,Vr
}
,

Vt = IM ⊗ δ2I2,Vr = IN ⊗ δ2I2.
The Fisher information matrix (FIM) for unknown vector x =[
uT , (xt1)

T
, ..., (xtM )

T
, (xr1)

T
, ..., (xrM )

T
]T

can be computed
as

[J]i,j =

(
∂u

∂[x]i

)T
V−1

(
∂u

∂[x]j

)
. (17)

The calculation of ∂u
∂[x]i

, i = 1, ...,MN + M + N involves

the equations
∂(Rt

m+Rr
n)

∂x =
x−xt

m

Rt
m

+
x−xr

n

Rt
n

,
∂(Rt

m+Rr
n)

∂y =

y−ytm
Rt

m
+

y−yrn
Rt

n
,
∂(Rt

m+Rr
n)

∂xt
m

=
xt
m−x
Rt

m
,
∂(Rt

m+Rr
n)

∂xr
n

=
xr
n−x
Rr

n
,

∂(Rt
m+Rr

n)
∂ytm

=
ytm−y
Rt

m
and

∂(Rt
m+Rr

n)
∂yrn

=
yrn−y
Rr

n
, m =

1, ...M, n = 1, ..., N . Now, we can easily calculate the FIM for
the unknown parameter x and hence the corresponding CRLB.
We are interested in the estimating of the target position u,

and its CRLB is given by

√
2∑
i=1

(J−1)i,i.
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Fig. 1. MSE performance of the proposed SDP estimator with accurate
antenna position.
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Fig. 2. MSE performance of the proposed SDP estimator with antenna
position errors.

IV. SIMULATION RESULTS

In this section, we conduct Monte Carlo simulations to
evaluate the proposed SDP solutions. Comparison with the
SDP method [14], WLS [12] and CRLB. The proposed SDP
solutions based on (10) and (15), which are referred to as
”SDP-penalty” and ”SDP-Robust” respectively. We consider
a MIMO radar system with four transmit and receive an-
tennas, i.e. M = N = 4. The transmit antenna positions
are xt1 = [−1000,−1300]Tm, xt2 = [500, 2000]

T
m, xt3 =

[2500, 0]
T
m, xt4 = [0,−1600]Tm. The receive antenna posi-

tions are xr1 = [1500,−1800]Tm, xr2 = [2100, 1500]
T
m, xr3 =

[−1200, 1000]Tm, xr4 = [1000, 1200]
T
m. The unknown-

position target is located at [0, 200]
T
m. The uncertainty of

the antenna position is generated by adding the true position
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with an Gaussian random variable which has zero-mean and
variance δ2= 12m2. We scale {εm,n} to produce different
measurement noise conditions. All results provided are av-
erages of 500 independent runs.

In the first simulation, the impact of measurement noise
level on the mean square error (MSE) performance of the
proposed SDP solution (10) is studied. We assume the antenna
positions are accurate. We vary the variance of the measure-
ment noise from 102m2 to 106m2. The corresponding MSEs
are shown in Fig.1. It can be seen that the MSE performance
of the proposed SDP solution attains the CRLB for the whole
range of noise variance. The SDP solution without the penalty
term can not guarantee its optimal MSE performance when
the noise variance is small, that is, σ2 ≤ 103m2. Furthermore,
the performance of the WLS solution is worse than SDP type
solutions, which may be due to the ignoring of high order
error terms in deducing the WLS method.

In the second simulation, we assume that the trans-
mit/receive antenna positions are subject to uncertainties. The
MSE performance results are ploted in Fig.2. It can be ob-
served that the localization algorithms without considering the
antenna position uncertainty show poor estimation accuracy
under small or large noise condition. Specifically, the SDP
method without penalty term shows worst MSE performance
under small noise condition (σ2 ≤ 104m2), while the proposed
SDP method of (10) shows worst MSE performance under
large noise condition (σ2 ≥ 104m2). Thus, we conclude that
our proposed robust SDP solution is significantly superior to
other loclaization methods assuming perfect antenna position
knowledge.

V. CONCLUSIONS

In this work, we have investigated the problem of tar-
get localization in MIMO radar system using bistatic range
measurements. We first consider the localization scenario
with accurate radar antenna positions. Under the assumption
of Gaussian measurement noise, MLE objective function is
formulated, and which turns out to be a highly nonconvex
and nonlinear optimization problem. To solve this problem
efficiently, we apply the SDP relaxation technique to convert
the original MLE optimization problem into a convex problem.
Furthermore, we propose to add a penalty term to improve the
tightness of the original SDP algorithm. We then propose a
robust localization method when the radar antenna positions
are subject to errors. Finally, simulation results confirms
the effectiveness and robustness of the proposed localization
methods.

The study in this correspondence assumes Gaussian mea-
surement and antenna position errors for ease of illustration
and CRLB derivation. A possible extension of the current work
is to consider different kinds of measurement or position er-
rors, thus making the applicability of the localization algorithm
more extensive.
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