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Abstract—An extension of the Tensor Network (TN) Kalman
filter [2], [3] for large scale LTI systems is presented in this
paper. The TN Kalman filter can handle exponentially large
state vectors without constructing them explicitly. In order to
have efficient algebraic operations, a low TN rank is required.
We exploit the possibility to approximate the covariance matrix
as a TN with a low TN rank. This reduces the computational
complexity for general SISO and MIMO LTI systems with
TN rank greater than one significantly while obtaining an
accurate estimation. Improvements of this method in terms of
computational complexity compared to the conventional Kalman
filter are demonstrated in numerical simulations for large scale
systems.

Index Terms—Kalman filter, LTI systems, tensors, tensor train,
large scale systems, SISO, MIMO, curse of dimensionality.

I. INTRODUCTION

The Kalman filter [9] is a stochastic optimal filter for dy-
namic linear systems. Since its introduction, it is successfully
applied to a variety of different applications, see e.g. [1], [7].
For systems with exponentially large state size nd and output
size p assuming p ≤ nd, the conventional Kalman filter is
infeasible. First, because the computational complexity scales
with order O

(
n3d

)
. Second, the storage of exponentially large

system dynamics is in matrix form prohibitive. A more suitable
filter framework has to be developed.

One possibility for a large scale Kalman filter is the Tensor
Network (TN) Kalman filter as developed in [2], [3]. Both
concern the system identification of Multiple-Input Multiple-
Output (MIMO) Volterra systems using Kalman filter where
the latter one uses a batch of multiple measurements. The
Volterra systems are rewritten in LTI system form and there-
fore the described implementation can equally be used for
dynamic linear systems. Hence, in the remainder of the paper
the method in [2] will be denoted as Single-Input Single-
Output (SISO) and the method in [3] as MIMO TN Kalman
filter. This filter makes use of special TNs [12] in Tensor
Train (TT) format [13] without explicitly constructing the
underlying exponentially large matrices and vectors. Hence, a
reduction of computational complexity from O

(
nd

)
to O (dn)

is achieved. Fig. 1 highlights the computational advantage
of the TN Kalman filter for large LTI systems while still
obtaining accurate estimation results (see full and dashed line).
This holds for the special case where the system dynamics
in TT-format have the property that all TN ranks are equal
to one, denoted as ttr(·) = 1 and formally introduced in the
preliminaries.
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Fig. 1. Computation time per time step of random stable LTI SISO system
for conventional and TN Kalman filter using rounding tolerance ε = 10−6

and mean out of 15 Monte Carlo simulations (using varying initial conditions
and noise) over 25 time steps.

In general, the TN ranks can be high for large unstructured
systems and are only bounded by the canonical rank [16] of
an exact canonical decomposition of the underlying tensor [4],
[11]. The computational complexity of the TN Kalman filter is
polynomial dependent on the TN rank of the system dynamics
matrices A and C in TT-format and the TN rank of the internal
variables of the filter (covariance, Kalman gain, state estimate).
This results in longer computation times for larger TN ranks.
Additionally, the implementation of the MIMO TN Kalman
filter in [3] has a complexity of O

(
p3
)
.

In this paper, a solution is proposed to tackle the problem
of large TN ranks in order to reduce computation time while
obtaining accurate results. This is especially of interest since
general system matrices do not have an optimal TN rank of
one. Fig. 1 shows the computation times in a comparison
for systems with TN rank at one and higher. The main
contributions of this paper can be summarized as:
• A possibility to reduce the effect of the TN ranks on

the computational complexity is derived. Therefore, the
covariance tensor in the TN Kalman filter is approximated
with low TN ranks, yielding a fast and accurate estima-
tion.

• Numeric simulation results are presented as comparison
between the conventional and TN Kalman filter. The latter
is shown with and without low TN rank approximation
of the covariance tensor to demonstrate the power of the
novel approach.

The paper is structured as follows. Section 2 introduces the
notion of tensors throughout the paper. It gives an overview on
TTs with multilinear operations and introduces the use of TTs
in the generalized TN Kalman filter. In section 3, the method
to identify the computational bottlenecks of the TN Kalman
filter is highlighted. Based on this analysis, the approach to
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approximate the covariance tensor is derived. Using these
insights, numerical simulations of the novel approach are
presented in section 4. Finally, section 5 concludes with final
remarks and open research directions.

II. PRELIMINARIES

In this paper, a tensor is a multidimensional array as a
generalization of matrices to higher order. An order-d tensor
has d indices and is denoted with capital calligraphic letters
X ∈ Rn1×···×nd . Matrices will be denoted by capital bold let-
ters X ∈ Rn1×n2 and vectors by bold letters x ∈ Rn1 . Scalars
are given as Roman letters x ∈ R. The ith tensor element of
a set of tensors is indicated by superscript in round brackets
X (i). Introductions to tensors and their decompositions are
given in [6], [11], [12].

A. Tensor Train Theory

The Tensor Train (TT) decomposition is mathematically
introduced by [13] after previous work in [15], [17]. It decom-
poses an order-d tensor X ∈ Rn1×···×nd in a series of d order-
3 tensors X (1), . . . ,X (d) with X (i) ∈ RrXi−1

×ni×rXi ∀i,
called TN cores. The parameter rXi

are the TN ranks con-
necting the single TN cores in a line network. The border TN
cores are defined as rX0 = rXd

= 1. Throughout this paper,
the maximum TN rank over all TN ranks of a TT X will be
denoted as ttr(X ) = max(rXi

) = rX ∀i.
An example for a graphical visualization of the TT decom-

position using TN diagrams [6], [12] is given for an order-
6 tensor X in Fig. 2. Each circle depicts a TN core; the
number of free lines is the order of the tensor; the size of the
interconnecting lines represent the TN ranks rXi

. The example
decomposes the order-6 tensor X in six order-3 tensors X (i),
i = 1, . . . , 6.

Fig. 2. Graphical visualization of the TT decomposition of an order-6 tensor
X using TN diagrams.

The power of the TT decomposition is twofold. Storing
an exponentially large matrix X ∈ Rnd×nd

requires storage
of O

(
n2d

)
entries. In TT-format storage of X requires only

O
(
dn2r2X

)
entries, i.e. linear in the exponent d, which is a

reduction if the TN ranks rX are small. Secondly, multilinear
algebra as a generalization of linear algebra to higher spaces
can be used to effectively apply basic mathematical operations
[8]. This is computationally effective since the operations
work on each single TN core, which are small compared
to the full matrix. An example of multilinear algebra is the
so called mode-n product as a higher order equivalent of
matrix multiplications for tensors [6], [11]. Often, the term
contraction along the mode n is used for this operation.

A problem with multilinear operations in TT-format is the
increase of the TN rank. For example, the contraction along the

second mode of the tensor A with TN cores A(i) ∈ RrA×n×rA

with the tensor B with TN cores B(i) ∈ RrB×n×rB has
resulting TN ranks rArB . In [13], a procedure called round-
ing is described to decrease the TN ranks towards a given
rounding tolerance ε. Two main steps are needed. First, an
orthogonalization of all TN cores using QR decompositions
and second, a δ-truncated SVD.

Consider for example a tensor X in TT-format with or-
thogonal TN cores. The procedure computes the δ-truncated
SVD of each matricified TN core X (i) ∈ RrXi−1

×n×rXi .
The matricification is done such that the number of columns
is equal to the right TN rank X

(i)
(rXi

) ∈ RrXi−1
n×rXi . The

truncation threshold is given by

δ = ||X||F
ε√
d− 1

, (1)

using the rounding tolerance ε and the number of TN cores d.

B. Tensor Kalman Filter

The TT theory can be used to define a Kalman filter and lift
the curse of dimensionality for large scale systems. Therefore,
the following LTI system is considered

xk+1 = Axk +wk

yk = Cxk + vk

(2)

with state xk ∈ Rnd

, measurement yk ∈ Rp, A ∈ Rnd×nd

,
C ∈ Rp×nd

and covariance matrices Q ∈ Rnd×nd

and R ∈
Rp×p for the process noise wk and measurement noise vk,
respectively. The output is p = 1 for SISO and p = nd for
the MIMO case. The algebraic equations of the conventional
Kalman filter are split in two parts. The measurement update:

S = CPk|k−1C
> +R (3)

Kk = Pk|k−1C
>S−1 (4)

v = yk −Cx̂k|k−1 (5)
x̂k|k = x̂k|k−1 +Kkv (6)
Pk|k = (In −KkC)Pk|k−1 (7)

and the time update:

x̂k+1|k = Ax̂k|k (8)

Pk+1|k = APk|kA
> +Q (9)

When the system matrices A, C are large scale matrices,
the computation time rises exponentially as seen in Fig. 1. This
curse of dimensionality can be lifted by using the TN Kalman
filter. This is a generalization of the conventional Kalman filter
for higher order dimensions in TT format. It adapts the Kalman
filter equations to the required multilinear algebra. The TN
Kalman filter is introduced in [2] and [3].

In order to apply the TN Kalman filter to general LTI sys-
tems, the system dynamics in Eq. (2) have to be transformed in
TTs. Consequently, also the variables in the TN Kalman filter
are TTs. Use is made of the computational effective multilinear
algebra for TTs with this transformation. As an example, the
transformation of the state vector estimate x̂ to TT-format is
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explained intuitively. First, the vector x̂ ∈ Rnd

is reshaped into
an order-d tensor X̂ ∈ Rn×···×n. Second, the order-d tensor is
decomposed using the TT decomposition in d order-3 tensors
X̂ (i) ∈ RrXi−1

×n×rXi . The set counting index i goes from
1 to d and the border TN ranks are rX0

= rXd
= 1. This

decomposition step is visualized for d = 6 in Fig. 2 using
a TN diagram. The TN rank rXi

connects the TN core X̂ (i)

with X̂ (i+1). For the state transition matrix A ∈ Rnd×nd

in
TT-format, there is one more mode of size n for each TN core
compared to the state vector x̂. These examples illustrate how
the following variables for the TN Kalman filter are defined
in TT-format
• A with A(i) ∈ RrAi−1

×n×n×rAi

• C with C(1) ∈ RrC0
×p×n×rC1 and C(i) ∈ RrCi−1

×n×rCi

• P(·|·) with P(i)
(·|·) ∈ RrPi−1

×n×n×rPi

• X̂(·|·) with X̂ (i)
(·|·) ∈ RrXi−1

×n×rXi

• Kk with K(1)
k ∈ RrK0

×p×n×rK1 and K(i)
k ∈

RrKi−1
×n×rKi

• Q with Q(i) ∈ RrQi−1
×n×n×rQi

For completeness, the definition of the remaining matrices and
vectors are given as S ∈ Rp×p, R ∈ Rp×p and v ∈ Rp.
The specific implementation for the SISO and MIMO filter is
elaborated in [2] and [3] respectively.

III. PROBLEM ANALYSIS AND IMPROVMENT

In this part, the problem of increasing computation time for
high TN ranks due to their polynomial complexity is tackled.
This is done for the SISO and MIMO case since both struggle
with this phenomenon. Stable LTI systems without specific
structure of the matrices are considered. Converting such
system dynamics in TT-format yields in general ttr(A) > 1,
ttr(C) > 1. This general case is taken into account for the
following analysis. Hence, this will reduce the computational
speed of the TN Kalman filter significantly as presented
in Fig. 1 for the SISO case. Previous results in [2] have
shown that a rounding tolerance greater than the machine
precision is sufficient for accurate results and can speed up
the computation time. This result is applied in the following
by choosing ε = 10−6.

A. Analysis of State of the Art

To get insights on possible bottlenecks of the algorithm, the
computational complexity of the state of the art is analysed.
For the SISO tensor Kalman filter this can be found in Table 2
of [2] and summarized with O(dn3rx(·)) where the last factor
indicates the polynomial complexity in several TN ranks. This
compares to O(n3d) for a comparable conventional SISO
Kalman filter. For the state of the art MIMO tensor KF, the
complexity analysis is given in Table I.

It can be seen that there are two computational bottlenecks.
(1) The computation of the Kalman gain with cubic complexity
in the outputs p, since the inverse of the result of the Riccati
equation S is necessary. (2) The polynomial dependency on
all TN ranks. This paper addresses point two, while the first
point is a topic for future research.

TABLE I
COMPUTATIONAL COMPLEXITY OF MIMO TN KALMAN FILTER.

Step Kalman filter TN Kalman filter
S O

(
pn2d + p2nd

)
O((d− 1)(n2r2P r

2
C + nr2P r

4
C)+

+n2prP rC + np2rP r
2
C)

K O(pn2d + p2nd+ O((d− 1)(n2r2P r
2
C) + n2prP rC+

+p3) +np2rP rC + p3)
v O

(
pnd

)
O

(
(d− 1)nr2Xr

2
C + nprXrC

)
X̂k|k O

(
pnd

)
O

(
nprK1

)
Pk|k O

(
pn2d + p2nd

)
O

(
(d− 1)n2r4K + n2pr2K + np2rK

)
X̂k+1|k O

(
n2d

)
O

(
dn2r2Xr

2
A

)
Pk+1|k O

(
n3d

)
O

(
dn3r2P r

4
A

)

The TN ranks of the system dynamics rA, rC are inher-
ently given and determine subsequently the TN ranks of the
variables in the filter. Fig. 3 shows the converged maximum
TN rank of TT variables in the MIMO TN Kalman filter
using p = nd for increasing sizes of random systems with
ttr(A) = ttr(C) = 5. The TN rank choice is made to ensure
a higher TN rank than unity for the system dynamics while
keeping it low enough to obtain feasible computation times.
The TN cores are generated randomly using the tt rand(·)
command from [14]. Rounding tolerance is set to ε = 10−6

using 5 Monte Carlo simulations with 50 time steps to ensure
convergence. The figure highlights that the TN ranks of the
measurement and time update covariance tensor are driving
since they grow exponentially with the system size. This yields
a tremendous increase in computation time for large systems
if no counter measure is done.
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Fig. 3. Maximum TN rank of variables in MIMO TN Kalman filter for
increasing system size with nd = p using ttr(A) = ttr(C) = 5.

B. Extension for Reduction of Complexity

The variables in the analysis of Fig. 3 do have optimal TN
ranks according to the selected rounding tolerance ε. The main
idea of this paper is to obtain low TN rank approximations
of the driving factors, the covariance tensors, by choosing
lower TN ranks. This decreases the effect of polynomial
computational complexity.

The truncation of TN ranks in the covariance tensor to
lower values is based on the idea of the rounding procedure
[13]. After the orthogonalization step, a δ-truncated SVD
is executed which determines the TN rank. The truncation
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threshold δ is computed with Eq. (1) using the rounding
tolerance ε. However, the choice for the truncation threshold
is dependent on the distribution of the singular values. In
practice, it is often difficult to choose the tolerance ε for the
SVD truncation [5]. One approach is to use a fixed truncation
value, see e.g. [10]. If the TN rank is truncated with a fixed
r ≤ δ, only the r most dominant singular values of each
TN core are taken into account. Therefore, the TN rounding
function is adapted such that the SVD truncation threshold is
chosen as

min (r, δ)

in order to obtain the lowest possible truncation threshold.
The consequences of a low TN rank approximation in the TN
Kalman filter are in general:

• Reduction in computation time. This holds since a lower
TN rank of the covariance tensors will yield lower TN
ranks of subsequently computed variables and decreases
their influence on the computation time.

• Lower accuracy of the resulting estimation since a low
rank approximation is used.

Similar analysis as presented in Sec. IV has shown that in
case of truncating the TN rank of the second most driving
parameter, the Kalman gain, that the filter even tends to
diverge. Also, it is not useful to truncate the TN rank of
the estimated state since this is an output of the filter and
should be kept with the desired accuracy as chosen by the
rounding tolerance. Moreover, its influence is according to
Fig. 3 less driving than the covariance or Kalman gain. Note
that truncation of the covariances Pk|k and Pk+1|k is done
online at each time step.

IV. SIMULATION RESULTS AND DISCUSSION

Both the SISO and the MIMO filter can easily be extended
with the proposed approach. The power of the truncation
method is shown in simulation. Different random stable LTI
systems are generated with the state vector size nd and output
size p = 1 for SISO and p = nd for MIMO systems. For
simplicity, a mode size of n = 2 is chosen as smallest prime
factor equally to [17]. The system dynamics are in TT-format
described with ttr(A) = ttr(C) = 5, which is a generalization
compared to TN rank unity. The TN rank of the process noise
covariance tensor is given by ttr(Q) = 1. For the assumption
of the matrix Q being diagonal, this holds. The entries of
the diagonal process noise covariance are set to 0.1. The
measurement noise covariance matrix R is diagonal with all
entries at 0.5. The rounding tolerance is ε = 10−6, and a total
of 15 Monte Carlo simulations are run over 25 time steps.

The simulation is run on Matlab version 9.3.0.713579
(R2017b) installed on Linux Ubuntu 16.04 LTS making use
of the TT toolbox [14], Tensorlab v3.0 [18] and functions
provided with the code of [2], [3]. The hardware consists of
an Intel core i5-7200 quad-core CPU running at 2.5 GHz with
7.7 GB RAM.

A. SISO Kalman Filter

A comparison between the conventional Kalman filter and
the SISO TN Kalman filter with the mentioned properties is
presented in Fig. 4. For the TN Kalman filter, three settings
are simulated: without truncation of the covariance tensor TN
ranks as well as with truncation at ttr(P(·|·)) = {1, 5}. The
figure shows the computation time per time step of each filter;
the mean computation time over 15 Monte Carlo simulations
is depicted. The variance of the computation time is negligible
with maximum magnitude of 10−1.

10 1 10 2 10 3 10 4

States n
d
 [-]

10 -4

10 -2

10 0

T
im

e
 [

s
e

c
]

Computation Time per Time Step (SISO)

KF

Tensor KF, ttr(P)=1

Tensor KF, ttr(P)=5

Tensor KF

Fig. 4. Computation time per time step of random stable LTI SISO system
for conventional and TN Kalman filter with TN rank ttr(A) = ttr(C) = 5
using covariance TN rank truncation.

The results for the SISO filter yield two main points. First, a
comparison of the output estimation of the TN Kalman filter
with and without covariance TN truncation and the conven-
tional Kalman filter is done. The relative 2-Norm squared of
the outputs is used for this comparison defined as

||vec(y)− vec(ŷ)||22
||vec(y)||22

,

where vec(y) is the vectorized output of the simulated LTI
system and vec(ŷ) is the vectorized estimated output of the
respective Kalman filter. The difference between the relative
2-Norm squared of the conventional Kalman filter and the TN
Kalman filter is negligibly small and, therefore, the estimation
is accurate even with covariance TN rank truncation. This
yields that the approximation of the covariance tensor with
lower TN rank is still sufficiently accurate such that the overall
error stays small.

Second, the dash-dotted line with ‘+’ marker in Fig. 4
shows the computation time of the state of the art for systems
with ttr(A) > 1, ttr(C) > 1. The computation time grows
exponentially and is even more than two magnitudes higher
than for the conventional Kalman filter. Using the developed
approach to truncate the TN rank of the covariance tensor
yields a great improvement. With truncation at ttr(P) = 1,
the computation time becomes linear - similar to the results
for ttr(A) = ttr(C) = 1 in Fig. 1. For large scale systems
with nd > 600 states, this approach yields accurate and
significantly faster estimation results.
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B. MIMO Kalman Filter

For the MIMO Kalman filter, simulations are run with the
same setting using p = nd, meaning the number of outputs
is equal to the number of states. The resulting computation
times per time step are depicted in Fig. 5 using the mean of
15 Monte Carlo simulations.
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Fig. 5. Computation time per time step of random stable LTI MIMO system
for conventional and TN Kalman filter with TN rank ttr(A) = ttr(C) = 5
using covariance TN rank truncation.

Similar to the results of the SISO filter, the MIMO TN
Kalman filter has the same relative 2-Norm of the output with
and without covariance TN rank truncation and even with the
conventional Kalman filter. This confirms the optimality of the
TN Kalman filter. Regarding the computation time, the state of
the art TN Kalman filter for ttr(A) > 1, ttr(C) > 1 is given
by the dash-dotted line in Fig. 5. This depicts an exponential
increase of computation time being at least two magnitudes
slower than the conventional Kalman filter. The TN Kalman
filter with ttr(P) = 1 truncation converges for large nd to
the one of the conventional Kalman filter. This is reasonable
since both filters have a complexity of O

(
p3
)

which is not
tackled in this paper. Hence, for the MIMO case the approach
of covariance TN rank truncation yields an improvement in
computation time over the TN Kalman filter without it.

Remark: Note that in all simulations the covariance matrix
remained symmetric with P·|·−P>·|· at machine precision level.
Moreover, Pk+1|k remained postive definite, while Pk|k only
had the smallest eigenvalue larger than −eps.

V. CONCLUSION

The paper discusses the need for improvement of TN
Kalman filter for general LTI systems with TN rank ttr(A) >
1, ttr(C) > 1 due to computation time issues. Therefore,
the concept of TNs in TTs and the TN Kalman filter for
the SISO and MIMO case is explained in detail. An analysis
of the state of the art shows a polynomial dependency on
the computational complexity of the TN ranks decreasing the
computational time for large TN ranks. The driving variable
with the highest TN ranks within the Kalman filter is identified
to be the covariance matrix. Truncating its TN ranks by
considering only the most dominant singular values is verified
in simulation to yield accurate and computationally fast results.
This approach is applied to both the SISO and MIMO case,
improving the computation time for general LTI systems.

The complexity analysis and results for the MIMO TN
Kalman filter highlights the output dependency ofO

(
p3
)
. This

limits the MIMO filter to the same speed as the conventional
Kalman filter. Future work concentrates on the reduction of
complexity in the number of outputs. Moreover, a square-root
implementation of the TN Kalman filter is desired for practical
and numerical problems. This requires the computation of a
Cholesky or QR factorization in TT format, which is to the
knowledge of the authors not yet efficiently solved.
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