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Abstract—Previous work in 3D human action recognition has
been mainly confined to schemes in a single domain, exploit-
ing in principle skeleton-tracking data, due to their compact
representation and efficient modeling of the observed motion
dynamics. However, in order to extend and adapt the learning
process to multi-modal domains, inevitably the focus needs
also to be put on cross-domain analysis. On the other hand,
attention schemes, which have lately been applied to numerous
application cases and exhibited promising results, can exploit
the intra-affinity of the considered modalities and can then
be used for performing intra-modality knowledge transfer, e.g.
to transfer domain-specific knowledge of the skeleton modality
to the flow one and vice verca. This study investigates novel
cross-modal attention-based strategies to efficiently model global
contextual information regarding the action dynamics, aiming to
contribute towards increased overall recognition performance. In
particular, a new methodology for transferring knowledge across
domains is introduced, by taking advantage of the increased
temporal modeling capabilities of Long Short Term Memory
(LSTM) models. Additionally, extensive experiments and thor-
ough comparative evaluation provide a detailed analysis of the
problem at hand and demonstrate the particular characteristics
of the involved attention-enhanced schemes. The overall proposed
approach achieves state-of-the-art performance in the currently
most challenging public dataset, namely the NTU RGB-D one,
surpassing similar uni/multi-modal representation schemes.

Index Terms—Action recognition, attention schemes, deep
learning.

I. INTRODUCTION

The ability of computers to recognize human actions is of
paramount importance because of the wide range of possible
applications (e.g. ranging from surveillance and robotics to
health-care, entertainment and e-learning). The latter drew the
attention of the research community, which has devoted over
the past decades considerable resources to achieve credible
solutions. However, despite the significant efforts that have
been made and the abundance of published methods, the
problem continues to face inherent challenges, such as the
large intra-class or viewpoint variations.

The incorporation of depth sensors into conventional low-
cost RGB cameras has led research advancements, beyond
well-established image analysis techniques (i.e. appearance-
based representations), to the introduction of methods that
exploit either domain-specific knowledge or the complimen-
tary of different modalities (e.g. skeleton, depth, 3D flow)
[13], [14]. Such modalities provide robustness to illumination

and appearance variations, by enriching the original RGB
feature space with depth information that can be conducive
for resolving ambiguous actions.

Deep Learning (DL) has contributed a huge boost to the al-
ready rapidly evolving field of computer vision. Inevitably, DL
techniques have recently been applied in the field of 3D human
action recognition, aiming at efficiently modeling the observed
complex motion dynamics. These have been experimentally
shown to significantly outperform the corresponding hand-
crafted-based approaches. The majority of literature methods
rely only on the use of skeleton-tracking data (i.e. tracked
human skeleton). Several approaches have been proposed
using variants of Recurrent Neural Networks (RNNs), which
adapt the architecture design towards efficiently exploiting
the physical structure of the human body or employ gat-
ing mechanisms for controlling the spatio-temporal pattern
learning process [9], [10]. Despite the suitability of RNNs
in modeling time-evolving procedures, recently CNN-based
architectures have also been introduced [8], [15]. Additionally,
DL techniques have also been applied to depth-based action-
recognition problems, making extensive use of depth maps
for estimating a representation of the human silhouette and
subsequently modeling the action dynamics [17], [23], [25].
On the other hand, flow methods combine depth with RGB
information for estimating more discriminative representations
(namely 3D flow fields) that enable the focus of the analysis
procedure on the areas where action has been observed [12],
[16], [24].

Until now, very few works have concentrated on the prob-
lem of multi-modal 3D action recognition. Shahroudy et al.
[19] propose a deep auto-encoder that performs common
component analysis at each layer (i.e. factorizes the multi-
modal input features into their shared and modality-specific
components) and discovers discriminative features, taking into
account the RGB and depth modalities. The latter again puts
emphasis on the spatial domain analysis, relying on the initial
extraction of hand-crafted features, while the method is not
applicable to view-invariant recognition scenarios. In [26], a
CNN architecture is presented that combines RGB and depth
features, by jointly optimizing a ranking and a softmax loss.
Zhao et al. [30] propose a two stream RNN/CNN scheme,
which separately learns an RNN model, using skeleton data,
along with the convolution-based model, trained using RGB
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information, and lately fuses the obtained features. From
the above analysis, it can be deduced that the 3D action
recognition-related literature has in principle concentrated on
single-modality analysis, while the respective cross-modal and
knowledge transfer techniques have been poorly examined, i.e.
leaving a great potential for further performance improvement
unexplored.

A recent trend in DL research are the so called attention
mechanisms, which target the mimicking of the original visual
attention mechanisms found in humans. Such models are
designed to adaptively adjust the analysis focus (e.g. focus on
a certain region of an image, while perceiving the surrounding
image as a low-resolution background), providing also the
capability to interpret and visualize what the model is learning.
Inspired by the observations over human visual cognition,
recent studies adopt attention mechanisms in action recog-
nition tasks. In particular, a spatio-temporal attention based
mechanism is introduced in [1] that is able to automatically
focus on the hands, in order to detect the most discriminative
parts of the observed action. The latter handles attention in
a recurrent manner, by employing RNNs. Liu et al. [10]
propose a class of LSTMs, termed the Global Context-Aware
Attention LSTM (GCA-LSTM), which is able to selectively
focus on the informative joints in the action sequence with
the assistance of global contextual information. Additionally,
an end-to-end spatial and temporal attention model is pre-
sented in [21], which learns to adaptively put emphasis on
discriminative skeleton joints within each frame. Taking into
account the above analysis it can be observed that attention-
based approaches have shown considerable achievements in
single domain analysis, while their potentials in cross-domain
scenarios have not been explored yet.

The current study explores the problem of 3D human action
recognition using DL techniques, realizing a cross-domain
knowledge transfer approach. Different attention-based strate-
gies are investigated for incarnating modeling knowledge in
one domain and transferring/re-using it to/in a different one,
focusing in principle on exploiting skeleton-tracking data
for guiding the corresponding 3D flow modeling process.
In particular, a spatio-temporal attention mechanism with
informativeness gates is designed to adaptively adjust the
analysis focus on different frame patches. The latter takes
advantage of the increased temporal modeling capabilities
of Long Short Term Memory (LSTM) models. Additionally,
extensive experiments and thorough comparative evaluation
provide detailed insights to the problem at hand and demon-
strate the particular characteristics of the involved attention-
enhanced schemes. The proposed approach achieves state-
of-the-art performance in the currently broadest and most
challenging public dataset, namely the NTU RGB-D [18] one,
surpassing similar uni/multi-modal representation schemes.

The remainder of the paper is organized as follows:
Attention-enhanced action recognition strategies are presented
in Section II. Experimental results are discussed in Section III,
while conclusions are drawn in Section IV.

II. ATTENTION-ENHANCED ACTION RECOGNITION

A. Single modality analysis

Prior to the application of cross-modal analysis processes,
single-modality analysis is realized for each information
source. More specifically, for skeleton-based analysis, the
work of [9] is adopted, where spatial dependencies among
joints and temporal correlations among frames are modeled at
the same time, using a so called Spatio-Temporal LSTM (ST-
LSTM) mechanism. For the particular case of depth- and flow-
based analysis, a template matching approach, presented in the
study of [16], is selected that learns spatio-temporal features
from videos, by applying 3D convolutions. For performing
action recognition, a composite 3D CNN-LSTM architecture is
adopted, where an individual LSTM network is introduced for
every considered modality. More specifically, the introduced
flow and depth representations are computed by considering
the spatio-temporal features from the last FC layer of the 3D
CNN model [16]. The developed single-modality LSTMs are
trained to predict the observed action class at every video
segment, while for estimating an aggregated probability for
each action for the entire video sequence, simple averaging of
all corresponding probability values of all clips is performed.
Multi-layer LSTMs are used in this work for efficiently
encoding more long-term correlations in the input data.

B. Cross-domain knowledge transfer

Different modalities exhibit particular characteristics with
respect to the motion dynamics that they encode. To this
end, a truly robust action recognition system should combine
multiple information sources. In this respect, several attention
strategies are investigated for the integration of a comple-
mentary information stream, mainly differing at the level that
attention-based modulation is applied, namely a) before (A-
LSTMbefore), where the attention vector is applied to the
LSTM’s inputs, b) after (A-LSTMafter), where the attention
vector is applied to the LSTM’s output, or c) using a gating
mechanism inside (A-LSTMgating) the LSTM layer. Among
the three models, the A-LSTMgating is applied directly
to the LSTM unit, controlling the spatio-temporal learning
process, while achieving faster convergence and improved
recognition performance. The introduced attention-enhanced
scheme (A-LSTMgating) exhibits the following advantageous
characteristics: a) it retains the sequential modeling ability of
the original LSTM, while reinforcing its selective attention
capability, by introducing a global context memory cell derived
from complementary modalities, and b) it simultaneously takes
into account multi-modal information, by extending the design
of the attention model in a multi-stream fusion scheme.

The proposed attention mechanism (A-LSTMgating) uti-
lizes informativeness gates to adaptively assign diverse levels
of attention to different frames. In order to reliably identify the
discriminant parts of an action, an informativeness score for
the whole action sequence can be derived from complementary
modalities. Inspired by the work of [10], a global context
memory cell for the LSTM is defined, which maintains the
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global contextual information of the action sequence that
is in turn fed to subsequent LSTM processing steps. The
global context memory cell models an overall representation
of the whole action sequence and determines the degree of
importance of each frame. The proposed attention mechanism
receives as input the global context information that is derived
from the first stream, denoted as Gating Signal (GS), and then
appropriately modulates the processing of the second stream,
denoted as Processing Signal (PS). Both GS and PS signals
are modeled using LSTMs that are denoted LSTMGS and
LSTMPS , respectively. In particular, LSTMGS is used for
encoding the action sequence dynamics (i.e. generating an
attention mask) and initializing the global context memory
cell, while applying different levels of attention over the inputs
of LSTMPS (i.e. refining the LSTM input).

In order to better illustrate the core functionality of the
proposed attention mechanism, let H′(t) be the LSTM state
vector of LSTMGS at time t (i.e. the modality that initializes
the global context memory) and H(t) the hidden representation
of LSTMPS (i.e. the stream that is modulated by LSTMGS).
In order to initialize the global memory value A, the average
of the internal state values H′(t) is used, as follows:

A =
1

T

T∑
t=1

H′(t), (1)

where T denotes the total number of frames. The informative-
ness degree of the input is assessed at every step in LSTMPS .
In particular, let W1 and W2 be affine transformations, com-
prising key model parameters (learnable weight matrices). The
network’s objective is to estimate an informativeness gate E(t)
for each input value H′(t), by feeding the input itself and the
global context memory A to the LSTMPS unit, according to
the following formalization:

E(t) = W1(tanh(W2(
H′(t)

A
))) (2)

R(t) =
exp(E(t))∑T
q=1 exp(E(q))

(3)

where R(t) is the normalized informativeness score of input
H′(t), in the interval (0, 1), so that it can be interpreted as
probability. Using the learnt informativeness gate, the cell state
C(t) of the LSTMPS unit can be updated as:

C(t) = F(t)C(t− 1) + I(t)G(t) (4)

C(t) = (1− R(t))F(t)C(t− 1) + R(t)I(t)G(t) (5)

where C(t − 1) is the ‘internal memory’ of the LSTMPS

at previous time step and the gates I(t) and F(t) control the
degree to which the memory accumulates new input G(t) and
attenuates its memory, respectively.

By comparing the cell state equations (4) and (5), it can be
easily observed that the proposed informativeness gate R(t)
controls the degree to which the memory accumulates new
input. More specifically, if the input H′(t) is in accordance

Fig. 1: Attention-enhanced scheme A-LSTMgating: The
LSTMGS generates an attention mask and initializes the
global context memory cell, while the LSTMPS applies
different levels of attention over the input.

with the global context memory (2) (i.e. normalized informa-
tiveness score > 0.5), then the learning algorithm updates the
memory cell of LSTMPS . On the contrary, if the input H′(t)
is irrelevant (i.e. normalized informativeness score < 0.5),
then its effect is suppressed.

Fig. 1 depicts the proposed attention scheme A-
LSTMgating reinforced with the informativeness gate, which
can be trained similarly to other LSTM unit gates, using
back-propagation. The proposed multi-modal attention-based
technique is generic and can be applied with any possible
modality combination (e.g. A-LSTMs→f

gating, A-LSTMf→s
gating,

A-LSTMs→d
gating, A-LSTMf→d

gating, etc.). Methods indicated
with superscript ‘s’, ‘c’, ‘d’ and ‘f’ incorporate skeleton, color,
depth and flow data, respectively, while superscript→ denotes
the modulation direction between the two involved modalities.
In this way, cross-domain knowledge transfer is realized
(i.e. enabling the transfer of knowledge across modalities in
different domains), which facilitates both more efficient action
pattern modeling and faster Neural-Network (NN) learning.

III. EXPERIMENTAL RESULTS

A. Dataset and implementation details

In this section, experimental results as well as comparative
evaluation from the application of the proposed attention-
enhanced method are presented. For the evaluation, the ‘NTU
RGB+D’ [18] dataset was used (Table I), which supports a
total of 60 action types. A set of 64 frames were uniformly
selected for feature extraction, which roughly corresponds to
one third of the average number of frames per action. With
respect to the implemented attention-enhanced approaches, the
‘Torch1’ scientific computing framework and a Nvidia Tesla
K40 GPU were used. Zero-mean Gaussian distribution with
standard deviation equal to 0.01 was used to initialize all NN
weight and bias matrices. All class predictions were passed

1http://torch.ch/
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Method
Accuracy

Cross-
subject

Cross-
view

a)
Depth 69.57% 71.29%
Skeleton 66.87% 73.59%
Flow 76.43% 82.96%

b)

A-LSTMs→f
before 77.34% 83.79%

A-LSTMs→f
after 77.82% 84.11%

A-LSTMs→f
gating 82.16% 88.48%

A-LSTMf→s
gating 72.85% 81.26%

A-LSTMf→f
gating 79.53% 86.10%

A-LSTMs→s
gating 71.26% 79.73%

A-LSTMs→d
gating 75.49% 77.74%

c)

HBRNN-Ls [2] 59.07% 63.97%
SFAMf [24] 57.36% 59.14%
LieNets [3] 61.37% 66.95%
P-LSTMs [18] 62.93% 70.27%
Atomic3DFlowd [12] 66.20% -
ST-LSTMs [9] 69.20% 77.70%
JL ds [29] 70.26% 82.39%
Two-Stream RNNs [22] 71.30% 79.50%
Conv3D-Flowf [16] 73.27% 79.64%
DSSCA-SSLMcd [19] 74.86% -
GCA-LSTMs [10] 74.40% 82.80%
Res-TCN(Temporal Conv)s [6] 74.30% 83.10%
Adaptive Trees [7] 74.60% 83.20%
MTLNs [5] 79.60% 84.80%
ResNet-56s [15] 78.20% 85.60%
View invariant CNNs [11] 80.03% 87.21%
VA-LSTMs [28] 79.20% 87.70%
ST-GCNs [27] 81.50% 88.30%
Two-Stream CNNs [8] 83.20% 89.30%
DPRL+GCNNs [20] 83.50% 89.80%
STA-Handscs [1] 82.50% 88.60%
Mul-Score fusioncs [30] 82.89% 90.1%
Proposed approachsf 82.16% 88.48%

d)

Slowsdf 78.62% 83.86%
Latesdf 81.94% 88.36%
A-Slowsdf 85.65% 90.94%
A-Latesdf 86.46% 92.47%

TABLE I: Action recognition results in NTU : a) Single-
modality analysis, b) Attention-enhanced analysis, c) Com-
parative evaluation, and d) Attention-enhanced multi-modal
analysis. Underlined methods indicate multi-modal schemes.
Methods indicated with superscript ‘s’, ‘c’, ‘d’ and ‘f’ incor-
porate skeleton, color, depth and flow data, respectively.

through a softmax operator (layer) to estimate a probability
distribution over the supported actions. Stochastic Gradient
Descent (SGD) was used during training, along with a multi-
nomial logistic loss function. The batch size was set equal
to 256, while the momentum value was equal to 0.9. Weight
decay with value 0.0005 was used for regularization, while the
training procedure lasted 30 epochs. Additionally, an adaptive
learning rate approach [4] was followed during training.

B. Attention schemes evaluation

Quantitative evaluation from the application of the proposed
cross-modal attention schemes (Section II) is provided in Table

I. The exhibited results [group (b) in Table I] suggest that
incorporating additional information inside the LSTM unit im-
proves the overall classification performance by approximately
5.52%, compared to the best performing single-modality re-
sults (3D flow-based ones); highlighting the importance of the
gating mechanism (i.e. the informativeness gate). Among the
three proposed attention schemes, A-LSTMgating is shown
to be the best performing one, mainly due to its advantageous
characteristic of combining the attending ability of the gating
mechanism with the increased temporal modeling capabilities
of LSTM, i.e. directly affecting the LSTM unit state during
the learning process. Examining the behavior of the attention-
enhanced schemes in more details, it can be observed that
performance is maximized when attention information from
the skeleton modality is used to guide the training of the flow
modality A-LSTMs→f

gating. Intuitively, this is mainly due to
the elegant combination of domain-specific features (skeletal
joints) with highly rich and expressive features (3D flow
vectors) that are highly complementary in nature. Additionally,
it can be seen that different attention combinations (e.g. A-
LSTMs→s

gating and A-LSTMf→f
gating) perform reasonably well,

even if the same information stream is used for both guiding
and learning.

C. Comparative evaluation

The proposed action recognition schemes are also com-
paratively evaluated with numerous methods of the literature
[third (c) group of experiments in Table I]. From the presented
methods, multi-modal information processing is realized in
the works of DSSCA-SSLM [19] (color, depth), STA-Hands
[1] (color, skeleton) and Mul-Score fusion (LSTM+CNN)
[30] (color, skeleton). The remaining single-modality methods
make use of depth (Atomic3DFlow [12]), 3D flow (SFAM
[24] and Conv3D-Flow [16]) or skeleton-tracking [HBRNN-
L [2], LieNet [3], P-LSTM [18], ST-LSTM [9], JL d [29],
Two-Stream RNN [22], GCA-LSTM [10], Res-TCN (Tem-
poral Conv) [6], Adaptive Tree [7], MTLN [5], ResNet-
56 [15], View invariant (Synthesized CNN) [11], VA-LSTM
[28], ST-GCN [27], Two-Stream CNN (Motion+Trans) [8]
and DPRL+GCNN [20]] data. The recognition performance
of literature methods is indicated as reported in [3], [12],
[15], [16], [19], [29]. Overall, from the presented results, it
can be seen that A-LSTMs→f

gating compares favorably with
most uni/multi-modal techniques (often surpassing them with
a large margin), despite the fact of not using the best-
performing literature representation for the skeleton modality.
This justifies the fundamental claim of the current work that
for achieving improved action recognition results, knowledge
transfer across different domains is beneficial.

The fundamental aim of the proposed attention schemes
is to model, transfer and re-use knowledge across different
domains. However, in order to realize a fair comparison
with the respective multi-modal literature approaches, these
attention schemes need to be inevitably combined with typical
multi-modal fusion strategies. In this respect, conventional
slow and late fusion schemes (similar to the ones presented in
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[4]) were implemented and the obtained results are indicated
in Table I [fourth (d) group of results]. In particular, for
the case of slow fusion (Slowsdf ), a composite multi-layer
LSTM was developed, by introducing additional layer(s) on
top of the single-modality ones; the additional LSTM layer(s)
received as input a composite vector that resulted from the
simple concatenation of the state signals. On the contrary, the
late fusion approach (Latesdf ) aggregated uni-modal LSTM
state vectors in a given time window, while adopting a
fully-connected-based mechanism for exploiting correlations
among the features of the involved modalities. The above-
mentioned slow and late fusion schemes were also combined
with the best performing attention mechanisms (methods A-
Slowsdf and A-Latesdf in Table I), where instead of the orig-
inal single-modality data the attention-enhanced counterparts
A-LSTMs→f

gating, A-LSTMs→d
gating and A-LSTMf→s

gating were
used. From the presented results, the following main observa-
tions can be made: a) the attention-enhanced fusion schemes
perform better than the proposed attention approaches alone,
with A-Latesdf being the best multi-modal fusion scheme,
b) the attention-enhanced fusion schemes exhibit significantly
improved performance compared to the conventional fusion
ones (namely Slowsdf and Latesdf ). Moreover, it can be
seen that A-Latesdf exhibits state-of-the-art performance. The
latter observations again highlight the significant added value
of incorporating spatio-temporal attention mechanisms in the
realization of 3D human action recognition.

IV. CONCLUSIONS

In this study, the problem of 3D human action recognition
using DL techniques was investigated following a cross-
domain knowledge transfer approach. In particular, different
spatio-temporal attention mechanisms, controlled by infor-
mativeness gates, were introduced to adaptively adjust the
analysis focus on different frames. Extensive experiments and
thorough comparative evaluation were reported. The overall
proposed approach accomplished state-of-the-art performance
in the currently broadest and most challenging public dataset,
namely the NTU one. Future work includes the investigation
of incorporating more sophisticated attention mechanisms that
will support training with multi-modal data streams, while
evaluating with less or just one.
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