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Abstract— Multiple instance learning (MIL) has shown 

great potential in addressing weakly supervised problems in 

which class labels are provided for sets (bags) of instances. The 

main challenge in MIL comes from the lack of knowledge on the 

pertinence of each individual instance in class discrimination. In 

this paper we propose TensMIL2, a generic unsupervised 

feature extraction procedure based on non-negative PARAFAC 

(CP) decomposition, combined with instance selection and MIL 

classification, that is efficient also for partially observed 

datasets. Evaluation of our algorithm in standard MIL 

benchmark datasets showed that TensMIL2 is performing 

better than state-of-the-art algorithms in most of the cases. 

Moreover, the comparison of the proposed feature 

representation via CP decomposition to the previously used 

features, showed an increase in performance in most of the 

cases, in both full and partially observed (90% missing values) 

datasets.  

Keywords— multiple instance learning, constrained 

PARAFAC (CP) tensor decomposition, image classification 

I. INTRODUCTION 

In many real-life applications data tend to be complex, 
incorporating different concepts, represented as a collection of 
features vectors, each one covering an aspect of the sample 
(e.g. patches of an image or paragraphs of a text). This fact, 
led to the introduction of Multiple Instance Learning (MIL) 
and was first applied by Dietterich et al. in [1] for drug activity 
prediction. MIL is a form of weakly supervised learning, 
where each observation (called a bag) contains several feature 
vectors (called instances). In the MIL setting labels are 
provided only for the bags, while class labels of the individual 
instances are unknown. Furthermore, some of the feature 
vectors could provide none or sometimes even misleading 
information about the respective bag’s class. 

Many algorithms have been proposed for the MIL setting 
and according to the taxonomy proposed by Amores [2] MIL 
algorithms can be classified into three paradigms: instance-
space, bag-space and embedded- or vocabulary-based. In the 
instance-space paradigm inference about the bag-labels is 
drawn by considering the predictions of the instances [1, 3], 
while in the bag space paradigm, a similarity function is 
defined and the unknown bag labels are inferred using only 
bag information. In the embedded-space paradigm the 
instances are mapped to a new concepts’ space, where each 
feature is a compact representation of the bag [4]. 

Multidimensional data are very common in the signal 
processing field like physiological signals [5], signals from 
gyroscopes and accelerometers for activity recognition [6], 
signals from EEG recordings for neurophysiological 
monitoring [7] or color images and video [8]. Often, 
malfunction of the recording devices or corrupted 
measurements due to high noise levels can result in partially 
observed data sets. In such cases, inference of the missing 
values is often necessary, which can be achieved e.g. with 
tensor completion techniques [9], or feature extraction can be 
based only on the observed values [5]. 

In this work we propose as extension of our previous work 
[5], a weakly supervised feature extraction and MIL 
classification method, called TensMIL2, that relies on tensor 
decomposition with non-negativity constraints and instance 
selection, and that can handle full or partially observed 
multidimensional data, like color images. In this approach, 
applicable for ordered classes, a high dimensional dictionary 
is constructed from a set of unlabeled observations using the 
PARAFAC decomposition and used for feature extraction. 
Robust regression is then applied to map the obtained feature 
vectors to class probability scores, while the estimated 
confidence intervals for the predicted instance responses are 
exploited for instance selection. Furthermore, a fusion process 
is applied to obtain a bag representation followed by Quadratic 
Discriminant Analysis for final label prediction. 

The main contributions of this work are summarized as 
follows: 

• Unsupervised feature extraction using PARAFAC 
decomposition with non-negativity constraints  

• Incorporation to the basic TensMIL algorithm [5] of an 
instance selection phase for selecting the most 
informative instances inside each bag 

• Improvement of classification accuracy over 
previously used features on classical MIL algorithms 

• Outperformance of TensMIL2 in the majority of the 
cases over classical state-of-the-art MIL algorithms on 
common benchmark datasets 

• Comparable performance of TensMIL2 using partially 
observed data (90% of missing values) with 
competitive algorithms using full values 
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II. RELATED WORK 

MIL algorithms have been widely studied in the past years 
with characteristic examples the embedded space algorithms 
MILES [10], JC2MIL [4], MILBoost [11] and MCILBoost 
[12] or other weakly supervised algorithms like in [13]. In 
MILES [10], bags are embedded in features space using an 
instance similarity measure and then relevant features are 
selected using 1-norm SVM. In JC2MIL [4] bags are 
embedded in a concepts’ space via instance clustering while 
the problem of the embedding in the new space is jointly 
solved with the problem of the classification. Cost functions 
from the MIL literature are combined with the AnyBoost 
framework in MILBoost [11], whereas MCILBoost [12] 
performs image (i.e. bag)-level classification, medical image 
segmentation and patch (i.e. instance)-level clustering in one 
framework. Recently two MIL architectures based on neural 
networks [14] and on attention-based deep neural networks 
[15] have been proposed for end-to-end training and to gain 
insight into each instance’s contribution to the bag label, 
respectively.  

In the field of feature extraction and classification based 
on tensor decomposition, High Order Discriminant Analysis 
(HODA) [16] is proposed for image and motor imagery 
classification. Recently, a framework from common and 
individual features extraction using non-negative PARAFAC 
and LL1 tensor decompositions is proposed in [8]. For a 
comprehensive review on tensor decompositions and machine 
learning we refer to the extensive review paper [17]. 

III. NOTATION AND PRELIMINARIES 

A. The PARAFAC decomposition 

A tensor of order N is a N-dimensional array. We denote 
tensors by boldface Euler letters (𝓧, 𝓨, 𝓩) , matrices by 
boldface capital letters (A, B, C), arrays by boldface 
lowercase letters (x, y, z) and scalars by lowercase italic letters 
(a, b, c). We refer to an element of a tensor of order N using N 
indices 𝑥𝑖1,𝑖2,…,𝑖𝑁

. Columns of a matrix are denoted by a 

boldface capital letter indexed by a star and a number (e.g. 
𝑨∗,1 refers to the first column of matrix 𝑨). We briefly outline 

the CANDECOMP/PARAFAC decomposition referred also 
as CP decomposition. For a comprehensive review on tensor 
decompositions the interested reader is referred to [18]. 
Without loss of generality we will refer to tensors of order 3 
for the sake of simplicity. Let 𝓧 be a 3rd order tensor of size 
𝐼 × 𝐽 × 𝐾. The CP decomposition of 𝓧 consists in expressing 
the tensor as a sum of R rank-1 tensors  

 𝓧 ≈ ∑ 𝐔∗,r°𝐕∗,r°𝐖∗,r R
r=1  () 

where matrices 𝐔, 𝐕, 𝐖  are of sizes 𝐼 × 𝑅, 𝐽 × 𝑅, 𝐾 × 𝑅 , 
respectively. Each matrix corresponds to one of the tensor’s 
dimensions having as columns all the components of the 
corresponding dimension. R is the rank of the CP 
decomposition and “°” refers to the outer product of vectors. 

In order to compute a CP decomposition, the following 
optimization problem must be solved:  

 min
𝐔,𝐕,𝐖

‖𝓦 ⊛ (𝓧 − ∑ 𝐔∗,r°𝐕∗,r°𝐖∗,r
R
r=1 )‖

F

2
 () 

where 𝓦 is an indicator tensor of size 𝐼 × 𝐽 × 𝐾  such that 
 𝓦(𝑖, 𝑗, 𝑘)  = 1, ∀( 𝑖, 𝑗, 𝑘) ∈ Ω and 0 otherwise, Ω ⊆
{1,2, … , 𝐼} × {1,2, … , 𝐽} × {1,2, … , 𝐾}  is the set of the 

observed indices of tensor 𝓧 and the symbol ⊛ denotes the 
Hadamard (element-wise) product. When Ω is equal to the set 
of indices of tensor 𝓧,  we have a full values problem, 
otherwise we have a missing values decomposition problem. 
We can additionally add constraints to the optimization 
problem (2), such as non-negativity, sparsity or orthogonality 
constraints to the factors. 

For calculating the CP decomposition, we exploit the well-
known Alternating Least Squares (ALS) algorithm [18] for the 
case of full values problem, the Proximal methods proposed 
in [19] for the case of missing values, and the Multiplicative 
Update (MU) algorithm [20] in the case of full values problem 
with non-negativity constraint imposed on all factors. Finally 
for the case of non-negativity constrains in the missing values 
setting we exploit the GenProxSGD algorithm [19] using a 
non-negativity projection on each update of the SGD 
algorithm, used for computing a proximal step of the 
algorithm. The update rule we used is:  

 𝜗𝑡+1 = Π(𝜗𝑡 − 𝜂𝑡|Ω|∇ℒ𝑥𝑖𝑗𝑙
(𝜃)) () 

where Π  is the non-negativity projection expressed by the 
rectifier activation function. Further details on the 
GenProxSGD algorithm are included in [19]. 

B. MIL problem statement 

We define formally the MIL problem. A bag 𝐵𝑖 =
{𝒙𝑖,𝑗 , 𝑗 = 1, … , 𝑛𝑖}, 𝑖 = 1, … , 𝑛 is a set of 𝑛𝑖 instances in the d-

dimensional space and n is the number of bags. The cardinality 
of 𝐵𝑖  can vary across the bags. The provided labels 𝑌𝑖 ∈ 𝒴 =
{1, 2, … , 𝐶} live in the bag space, where 𝐶 is the number of 
classes. The labels of the individual instances are not known; 
in our approach, we make the weak assumption that the 
instances inherit the label of the bag. The objective of a MIL 
problem is given a collection of n bags and their 
corresponding labels {(𝐵𝑖 , 𝑌𝑖), 𝑖 = 1, … , 𝑛} to learn a model 
for predicting the labels of new unseen bags. 

IV. TENSMIL2 

In this paper, we propose a feature extraction and instance 
selection mechanism along with a multiple instance 
classification method as an extension of our previous work 
[5], and show that it can improve the accuracy in the image 
classification problem. TensMIL2 consists of three 
components: (1) feature extraction from raw data based on the 
CP decomposition, (2) instance-level responses’ prediction 
and instance-selection and (3) the instance responses’ fusion 
and bag label prediction. In addition, an external Bayesian 
optimization procedure [21] is implemented for estimating the 
set of hyperparameters. 

A. Feature Extraction 

In order to extract MIL features from a collection of multi-
channel (color) images, we first divide the image in 𝑝 × 𝑝 
equal-sized patches of size 𝑘 × 𝑚 × 𝑙  pixels, where 𝑙 = 3 
corresponds to the 3 RGB color channels. Each of the 𝑘 × 𝑚 
patches is subsequently vectorized in each different color 
channel to form a 𝑴 = (𝑘 ⋅ 𝑚) × 3 matrix representing each 
instance. All matrices 𝑴 corresponding to the training and 
testing instances are concatenated to form a 3rd-order tensor 𝓧 
of dimensionality 𝐼 × 𝐽 × 𝐾 , where 𝐼 = 𝑝2 ⋅ 𝑛, 𝐽 = 𝑘 ⋅ 𝑚,
𝐾 = 3 , with 𝑛  being the number of images. In that 
arrangement the first dimension is dedicated to the instances, 
the second dimension to the spatial information of the image 
(pixels) and the third dimension to the RGB channels. 
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We can write the CP decomposition of (1) in mode-1 slices 
corresponding to each instance as follows: 

 𝑥𝑖,∗,∗ ≈ ∑ 𝑢𝑖𝑟(𝑽∗,𝑟°𝑾∗,𝑟), 𝑖 = 1,2, … , 𝐼𝑅
𝑟=1  () 

Each instance is approximated by a linear combination of 
R 2-dimensional components that form a high-dimensional 
dictionary. Thus, we can choose as instance-level features the 
ith row of the factor 𝐔  corresponding to the instances’ 
dimension. This feature extraction procedure can be employed 
to tensors of order 𝑁 ≥ 3 , producing dictionaries of order 
𝑁 − 1.  

After having computed the CP decomposition of rank R 
we perform Principal Component Analysis (PCA) on the 
extracted features, i.e. on the matrix 𝐔 corresponding to the 
instances’ dimension. The retained variance (percentage 𝑝) is 
a crucial parameter that must be adjusted during the 
hyperparameter tuning phase discussed in section IV-D. After 
PCA the truncated training and testing matrices are obtained 
and used to fit an instance-level regression model as discussed 
next. 

B. MIL regression on the instance-level responses 

At the second phase we build a full quadratic regression 

model 𝑓: ℝ𝑑 → ℝ  (containing squared terms, interactions, 
linear terms and an intercept) to calculate the instances’ 
responses using the squared error loss function. In order to 
train the instance-level regression model, we assume that all 
instances inherit the label from the bag they correspond to. To 
overcome this weak assumption, since many of the instances 
will behave as outliers, we employ robust regression which 
uses iteratively reweighted least squares with a logistic 
weighting function [22]. Details on the weighting function and 
the rest of the model parameters can be found in [5]. 

After constructing the regression model, instance selection 
is performed based on the certainty of the predictions. As prior 
knowledge does not exist, we obtain a certainty measure by 
examining the distribution of the residual intervals, of the 

instance level responses, 𝛾𝑖𝑗 = 𝑏𝑖𝑗 − 𝑎𝑖𝑗 , where [𝑎𝑖𝑗 , 𝑏𝑖𝑗] is 

the 95% confidence interval of the true mean response of 
instance 𝑗 inside bag 𝑖. A large value of 𝛾𝑖𝑗  suggests that the 

true response value lies on a broader interval, meaning that the 
confidence on the predicted response is low. On the other 
hand, a small value of 𝛾𝑖𝑗 suggests that the regression model 

predicted the response with higher confidence. Thus, when 
selecting the instances for which 𝛾𝑖𝑗  is larger than a threshold 

(𝑡ℎ𝑟), we can discard ambiguous instances. By tuning the 
threshold, the amount of retained information can be adjusted. 
In practice this threshold depends on the dataset and the 
amount of irrelevant (background) information it contains. 
Therefore, instead of fixing this value, it forms one of the 
hyperparameters of the method and is optimized using the 
validation set. Since the distribution of 𝛾  might vary 
significantly for every experiment, it is more stable to use as 
cutting point the value corresponding to the q-quantile of the 
cumulative distribution of 𝛾, and optimize over q instead of 
𝑡ℎ𝑟. 

The proposed instance selection criterion was visually 
confirmed by experiments on the natural images classification 
problem, which showed that the majority of the discarded 
instances corresponded to the image background. An example 
is shown in Fig. 1 where three bags from the positive class of 
the Tiger are depicted. We observe that the discarded patches 

correspond mainly to the background of the image. Based on 
these empirical results it is expected that instance selection can 
increase the efficiency of classification. 

 

Figure 1 Instance selection: The discarded patches with low confidence on 

the prediction are shown in black 

C. MIL classification: Bag labels predictions 

After training the robust instance-level regression model, 
a fusion of the individual predictions is required in order to 
extract bag-level information from the selected instances. We 
treat the instance-level responses as random variables and 
approximate their cumulative density function as the 
cumulative histogram of the responses inside each bag ℋ𝑖  
using 𝜗𝐻 bins of equal size (𝜗𝐻 = 8). 

Having computed the cumulative histograms of the 

instance label predictions, a bag-level classifier 𝐹: ℝ 𝜗𝐻 →
{1, 2, … , 𝐶} can be trained using as feature representation the 
histograms ℋ𝑖 . Assuming that the observations of each class 
are drawn from a multivariate Gaussian distribution, a pseudo-
Quadratic Discriminant Analysis classifier can be trained 
assigning each bag to the class with the maximum 
discriminant score, as described in [5]. 

D. Hyperparameter tuning phase 

As mentioned earlier, the proposed method has two 
hyperparameters: 𝑞 (the quantile defining the threshold for the 
instance selection) and 𝑝  (the retained variance in the 
dimensionality reduction and decorrelation phase). In order to 
tune these parameters we employ the Bayesian optimizer [21] 
using as objective function the mean two-fold Cross 
Validation (CV) error. After computing the hyperparameters 
we use them for training our classifier and asses it on a 
separate test set. 

V. RESULTS AND DISCUSSION 

For the evaluation of the proposed method we used the 
classical MIL benchmark data sets: Tiger, Fox, Elephant 
introduced by Andrews et al. [3]. Each of these datasets 
consists of 100 target animals (Tiger, Fox, Elephant) from the 
COREL dataset, that forms the positive class. The negative 
class consists of 100 animals randomly selected from the 
COREL database. There are multiple challenges in these 
datasets: (1) the animals are in different poses and in different 
backgrounds, (2) especially the Fox dataset includes animals 
with different phenotype (white and orange foxes), (3) the 
negative class is a mixture of different animals, (4) the 
background in the negative class often is similar to the 
background of the positive class. 

We evaluate TensMIL2 with full and missing values 
against state-of-the-art MIL algorithms including classical 
MIL algorithms like MILES [10], JC2MIL [4], 
MILBoost[11], MCILBoost [12], as well as MIL approaches 
that are based on neural networks [14] or on deep neural 
networks [15]. Furthermore, we evaluate the extracted 
features via the CP decomposition when exploited by state-of-
the-art classification algorithms with full or partially observed 
values. In all experiments we partitioned the raw images in 
10 × 10  equal-sized patches. The rank for all the CP 
decompositions is set to 𝑅 = 60 . For computing the CP 
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decomposition with full values, we employed the ALS 
algorithm from the Tensor Toolbox for MATLAB1, while for 
computing the non-negative CP decomposition with full 
values we employed the Multiplicative Update (MU) 
algorithm [20]. In the case of missing values, in all our 
experiments we discarded uniformly at random 90% of the 
values of the tensor. For computing the CP decomposition 
with missing values, we employed the GenProxSGD [19] 
while for calculating the non-negative CP decomposition we 
employed the GenProxSGD with non-negativity projection, as 
described in section III-A. 

For tuning the hyperparameters of TensMIL2 algorithm 
we employed the Bayesian optimizer [21] with 30 repetitions 
using 2-fold cross-validation on the training folds. Similarly, 
for tuning the hyperparameters of the classical MIL 
algorithms (MILES, JC2MIL, MILBoost and MCILBoost) we 
performed a grid search on the hyperparameter space with 30 
repetitions using 2-fold cross-validation on the training set. 
The results of the mi-NET, MI-NET and attention-based 
algorithms were not reproduced but are derived from [15]. In 
all experiments we report the 10-fold CV accuracy with the 
standard error of mean indicated inside the parentheses. 

A. Evaluation of TensMIL2 vs state-of-the-art MIL 

algorithms 

In Table 1 we report the 10-fold CV accuracy for the 
Tiger-Fox-Elephant datasets. We observe that overall 
TensMIL2 is achieving better test accuracy using non-
negative CP decomposition than the other MIL approaches. 
Furthermore, we observe that the feature selection phase 
introduced in TensMIL2 improves the performance of 
TensMIL by 6%. Regarding the missing values problem, the 
accuracy of the proposed TensMIL2 algorithm is slightly 
better with unconstrained CP decomposition than with non-
negative constrained decomposition. On the other hand, 
TensMIL2 with missing values achieves slightly better 
performance than MILES algorithm with full values. 

TABLE I.  10-FOLD CROSS VALIDATION ACCURACY 

 
10-fold CV accuracy 

Tiger Fox Elephant 

MILES [10] 0.77(0.028) 0.67(0.044) 0.77(0.022) 

JC2MIL [4] 0.85(0.019) 0.66(0.025) 0.85(0.028) 

MILBoost [11] 0.80(0.022) 0.61(0.051) 0.84(0.022) 

MCILBoost [12] 0.78(0.022) 0.59(0.044) 0.81(0.025) 

mi-Net [14] 0.82(0.034) 0.62(0.035) 0.86(0.037) 

MI-NET [14] 0.83(0.032) 0.63(0.038) 0.87(0.037) 

MI-Net with DS [14] 0.84(0.039) 0.64(0.037) 0.88(0.032) 

MI-Net with RC [14] 0.84(0.037) 0.62(0.047) 0.86(0.040) 

Attention [15] 0.84(0.022) 0.62(0.043) 0.87(0.022) 

Gated-Attention [15] 0.85(0.018) 0.60(0.029) 0.86(0.027) 

TensMIL [5] 0.80(0.038) 0.70(0.038) 0.76(0.022) 

TensMIL2 0.86(0.025) 0.68(0.028) 0.76(0.032) 

TensMIL2-nng 0.85(0.028) 0.71(0.035) 0.81(0.022) 

TensMIL missing 90% [5] 0.77(0.028) 0.68(0.032) 0.79(0.025) 

                                                           
1 Available on line at https://www.tensortoolbox.org/  

 
10-fold CV accuracy 

Tiger Fox Elephant 

TensMIL2 missing 90% 0.78(0.032) 0.65(0.032) 0.75(0.025) 

TensMIL2-nng missing 90% 0.77(0.038) 0.62(0.028) 0.76(0.013) 

Specifically, for the Tiger dataset TensMIL2 with 
unconstrainted CP decomposition achieves the best accuracy 
and TensMIL2 with non-negativity constraint is as accurate as 
JC2MIL algorithm. For the Fox dataset, the proposed 
TensMIL2 algorithm with non-negative CP decomposition 
performs 1-12% better than all other state-of-the-art 
algorithms. Regarding the instance selection step introduced 
in TensMIL2, it improves the accuracy of TensMIL by 1%. 
For the case of 90% missing values, we see that TensMIL and 
TensMIL2 perform better than all other investigated 
algorithms with full values. Finally, for the case of the 
Elephant dataset the proposed algorithm performs similar or 
worse than the other algorithms. 

In general, we observe that the feature selection scheme 
with the non-negativity constraint on the CP decomposition, 
improves the performance of TensMIL algorithm in complete 
datasets and performs overall better than most of the other 
algorithms. In the case of incomplete data, we observe that the 
instance selection step as well as the introduced non-
negativity constrains in the CP decomposition are not 
beneficial. The later fact could be interpreted as follows: The 
missing values problem is already a constrained CP 
decomposition problem, since part of the full tensor is 
observed, and introducing additional non-negativity 
constraints does not improve the classification accuracy, 
despite that the non-negative factors make the components 
more sparse and easier for interpretation. 

B. Comparison of features extraction techniques 

In this set of experiments, we compare the performance of 
classical MIL classifiers, when using standard features versus 
our proposed features from unconstrained CP decomposition, 
in the case of full and incomplete data. In the Tables that 
follow (II, III, IV) boldface results indicate the best 
performance along rows. 

We observe that for full values (first 2 columns) CP 
decomposition features improve the classification accuracy in 
half of the cases for Tiger, in all cases for Fox, and in 3 (out 
of 4) cases for Elephant. It is also important to note that the 
proposed features are robust to incomplete data, since results 
are comparable or even better when only 10% of the data are 
used for feature extraction. Finally, in case of the Fox dataset 
we observe that in all cases the CP features improve the 
classification accuracy of all algorithms from 1.5% to 12%. 

TABLE II.  TIGER 

Tiger 

10-fold CV accuracy 

Andrews [3] 
ALS R=60 

10×10 

GenProSGD R=60 

(90% missing 

values) 

MILES [10] 0.77(0.028) 0.75(0.025) 0.76(0.025) 

JC2MIL [4] 0.85(0.019) 0.74(0.022) 0.79(0.019) 

MILBoost [11] 0.80(0.022) 0.81(0.025) 0.78(0.035) 

MCILBoost [12] 0.78(0.022) 0.76(0.032) 0.79(0.032) 
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TABLE III.  FOX 

Fox 

10-fold CV accuracy 

Andrews [3] 
ALS R=60 

10x10 

GenProSGD 

R=60 (90% 

missing values) 

MILES [10] 0.67(0.044) 0.68(0.038) 0.60(0.032) 

JC2MIL [4] 0.66(0.025) 0.67(0.032) 0.59(0.041) 

MILBoost [11] 0.61(0.051) 0.70(0.028) 0.71(0.022) 

MCILBoost [12] 0.59(0.044) 0.71(0.035) 0.70(0.025) 

In the case of the Elephant with missing values we observe 
that MILES performs slightly better (0.5%) than with the 
original full values, while the other algorithms perform from 
1.5% to 11.5% poorer, which is a significant finding since we 
compare here the performance on the full data set against the 
incomplete dataset. 

TABLE IV.  ELEPHANT 

Elephant 

10-fold CV accuracy 

Andrews [3] 
ALS R=60 

10x10 

GenProSGD 

R=60 (90% 

missing values) 

MILES [10] 0.77(0.022) 0.84(0.035) 0.77(0.028) 

JC2MIL [4] 0.85(0.028) 0.86(0.019) 0.78(0.028) 

MILBoost [11] 0.84(0.022) 0.80(0.032) 0.73(0.032) 

MCILBoost [12] 0.81(0.025) 0.82(0.025) 0.80(0.035) 

VI. DISCUSSION AND CONCLUSIONS 

In this paper we present TensMIL2, an improved version 
of the TensMIL algorithm [5], in which we introduce instance 
selection and non-negativity constraints on the feature 
extraction phase, improving its performance from 1% to 6% 
in the natural images classification problem. Furthermore, 
TensMIL2 outperforms many other state-of-the-art MIL 
algorithms including MIL neural networks and MIL deep 
networks. Moreover, the assessment of the algorithm on 
benchmark datasets using only 10% of the values, showed that 
in some cases it performs even better than the classical MIL 
algorithms with full values. Furthermore, it was observed that 
in most of the examined cases (9 out of 12) the CP 
decomposition feature extraction scheme overall improves the 
performance of the classifiers even when the proposed 
features are extracted from incomplete data. In the future, we 
plan to investigate higher order (𝑁 > 3) representations of 
multiple instance datasets and incorporate additional 
constraints on the CP decomposition factors, as for example 
sparsity and orthogonality constraints. 
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