2019 27th European Signal Processing Conference (EUSIPCO)

Discriminative Joint Vector and Component
Reduction for Gaussian Mixture Models

Yossi Bar-Yosef and Yuval Bistritz
School of Electrical Engineering, Tel Aviv University, Tel Aviv 69978, Israel.

yossibaryosef@gmail.com,

Abstract—We introduce a discriminative parametric vector
dimensionality reduction algorithm for Gaussian mixtures that
is performed jointly with mixture component reduction. The
reduction algorithm is based on the variational maximum mutual
information (VMMI) method, which in contrast to other reduc-
tion algorithms, requires only the parameters of existing high
order and high dimensional mixture models. The idea behind
the proposed approach, called JVC-VMMI (for joint vector
and component VMMI), differs significantly from traditional
classification approaches that perform separately dimensionality
reduction first, and then use the low-dimensional feature vector
for training lower order models. The fact that the JVC-VMMI
approach is relieved from using the original data samples
admits an extremely efficient computation of the reduced models
optimized for the classification task. We report experiments in
vowel classification in which JVC-VMMI outperformed conven-
tional Linear Discriminant Analysis (LDA) and Neighborhood
Component Analysis (NCA) dimensionality reduction methods.

Index Terms—Dimensionality reduction, Gaussian mixture
models, Discriminative learning, Hierarchical clustering.

I. INTRODUCTION

The Gaussian mixture model (GMM) is a very powerful
parametric modelling tool that is often used to represent com-
plex data distributions. In many learning processes, high-order
models (models containing a large number of components)
are trained in a high-dimensional feature vector space. The
use of large mixture models often becomes computationally
expensive for practical implementations. An effective approach
to deal with such situations is to use reduction methods that
can be applied to the parameters of the already known, but too
complex, mixture models. Various component reduction algo-
rithms (sometimes called hierarchical clustering) that generate
a simplified model that maximizes its similarity to the original
mixture model were proposed [1]-[4]. Recently, it has been
demonstrated that for classification tasks, it is more effective
to learn the set of reduced order models by a joint multi-class
optimization, rather than learning separately a reduced model
for each class. [5] [6] [7] The joint model reduction problem
in [7] was posed as an information theoretic principle named
variational maximum mutual information (VMMI).

Another aspect of model simplification relates to the di-
mensionality reduction of the feature vector space. Finding
a lower-dimensional representation for the high-dimensional
feature vectors is a key ingredient in machine learning. It is
traditionally performed as part of the feature extraction phase
before models are trained using the lower dimensional vectors
as data sets. Dimension reduction is done to combat the “curse
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of dimensionality”, and it carries several benefits: leads to
computational cost reduction; finds representations on inde-
pendent principal components that usually improve the trained
model; provides insightful 2D and 3D data visualizations.

Many well known vector reduction (VR) methods essen-
tially assume that the underlying structure of the data can
be approximated by Gaussian clusters. Principal Component
Analysis (PCA) [9] and probabilistic-PCA (PPCA) [10] as-
sume a single Gaussian structure for all data; Linear Discrim-
inant Analysis (LDA) [11] assumes a single Gaussian for each
class with shared covariance; Heteroscedastic Discriminant
Analysis (HDA) [12] assumes a single Gaussian for each
class with unequal covariance. More complex methods, that
emphasize the strength of Gaussian mixtures, include mixture
of factor analyzers (MFA) [13], mixtures of probabilistic prin-
cipal component analyzers [14], and mixture of probabilistic
LDA (PLDA) suggested in [15]. Basically, these methods
search for a linear transformation for the original high-
dimensional feature vectors, without giving direct attention to
the constraints and structure of the final modelling scheme. In
addition, discriminative methods that directly process the data,
like Neighborhood Component Analysis (NCA) [16], pose a
demanding cost of O(n?) pairwise distance calculations per
iteration, for processing n samples.

Some related studies attempt to alleviate the latter com-
putational burden by explicitly using Gaussian mixtures. In
[17], the authors proposed a method called DCA-GM (dis-
criminative component analysis by Gaussian mixtures), whose
computational complexity has only O(n - r) calculations per
iteration, where r is the total number of Gaussians, and
using 7 < n. It uses a reduced-order GMM per class to
learn a linear discriminative transformation and it achieves
comparable results to the performance of NCA in K-Nearest
Neighbor (KNN) classification.

Pertinent to the approach in this paper are also some
previous VR studies. In [18] the authors reduce the com-
putational burden by describing the large data set by large
GMMs, then a linear transformation optimization is performed
over the parameters of the Gaussian components involving
computational cost of O(m?) of pairwise divergence (KL-
distance) calculations per iteration, where m is the number of
Gaussian components of the model and typically m < n. This
method can be thought of as a “hierarchical” neighborhood
component analysis, where a linear transformation is learned
through maximizing a mutual information criterion (Renyi’s
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entropy). In [19], the authors proposed discriminative VR
based on MMI, in which the transformed data vectors are
scored against a set of GMMs that represent the data distri-
bution. Thangavelu and Raich [20] presented linear VR with
multi-class GMMs using Chernoff union bound. They pre-
trained low-order GMMs to present the classes and optimized
a linear transformation that minimizes the Chernoff union
upper bound on the probability of the error after projection
onto the reduced subspace. Differently from [19], they use a
parametric optimization scheme to deliver the transformation
matrix.

All the aforementioned approaches perform VR without
taking into account the structure and capacity (e.g. the number
of clusters) of the final parametric model that is designated
to use the reduced size vectors. Whatever space dimension-
ality reduction approach is taken, next follows the question
of adjusting the model’s size/capacity for training. Complex
methods, like NCA, that do not pose constraints on model
capacity, can be optimal for high-capacity models, but may
result in poor accuracy when low-capacity models were used.
Recently, Yang et. al. [21] addressed this issue by introduc-
ing joint learning of unsupervised VR for training a GMM
over raw data samples. Their joint optimization outperformed
traditional methods that do VR first and GMM training only
afterwards.

In this paper we propose to carry out reduction of the
dimension of vectors within the discriminative hierarchical
VMMI method [7]. We introduce an extension to the VMMI
method that can perform joint component reduction and vector
reduction, named JVC-VMMI for short. In this setting, a linear
transformation matrix is embedded into the VMMI criterion, to
be able to perform VR along with component reduction (CR),
in a discriminative manner. The suggested method combines
the following major advantages: it considers limitations on the
final reduced models while reducing the vector dimension; it
provides an extremely fast parametric learning algorithm based
on the parameters of pre-trained high-order mixtures; it uses a
criterion that approximates the mutual information among the
original GMMs and the reduced GMMs classes, resulting in
a discriminative criterion.

Section II brings background on the VMMI criterion for
mixture models. In Section III we describe the VMMI al-
gorithm with linear projection for joint GMM reduction. In
Section IV we evaluate the JVC-VMMI procedure in vowel
classification. Conclusion is brought in the final section.

II. BACKGROUND - VMMI FOR MIXTURE MODELS

The VMMI method enables an extremely fast reduction of
a given set of high-order GMMs into a new set of reduced-
component models, with improved accuracy in classification
tasks.

We consider a set of N class models {F.(z)}Y
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new set of N GMMs of lower orders R. < M.,
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with mixing weights f.;, Zf:cl Bej = 1, and Gaussian com-
ponents g.;(z) with means and covariance matrices denoted
by

gcj(x) = N(x‘:uqﬁ Ecj)' (4)

In [7] it was shown that the realization of the mutual
information between the observations z € X, modeled by
G.(z), and the class variable ¢ € C, given that z|c is
distributed according to its high-order representation F,(x),
can be approximated by a variational Bayes approach as
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where p. is the a-priori probabilities for each class, 0 <
pe < 1, Zivzl p. = 1, and KL denotes the Kullback-Leibler
(KL) divergence between the pdf components. Since the KL
divergence for two multi-dimensional Gaussian distributions
(e.g. KL(feillgk;)) has a well known analytical expression, J
is differentiable and its maximization is analytically tractable.

III. VMMI WITH DIMENSIONALITY REDUCTION

The VMMI method described in the previous section solves
the problem of component-reduction from high-order mixtures
to lower-order mixtures embedded in the same vector space.
In this section we extend the VMMI setting to deal also with
dimensionality reduction of the vector space.

We consider the set of GMMs {F..(z)} Y, representing the
distribution of N classes, as described in the previous section.
Each model F,(x), represents the probability density function
of vectors 2 € RP, as in Equations (1) and (2).

Now we want to derive a simplified set of models
{G.(y)}Y_, with both reduced-dimension vectors y € R,
where d < D, and reduced-order mixtures with R. < M,.
The reduced GMM G.(y) is defined by

R
Ge(y) = Bejgei(v), ©6)
j=1
with components
9¢i (W) = N(Ylpcs, Tej)- @)

We define a linear projection matrix A of size (d x D), that
projects the high-dimensional vector x to a vector y in the
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lower-dimensional space by y = Ax. Consequently, the linear
projection of each original Gaussian, f.;(z) = N (z|me;, Vi),
onto the lower-dimensional space, can be written by a Gaus-
sian of correspondingly transformed mean and covariance

2y) = fA(Az) = N(y|Ame, AVLAT) . (8)

Cct

Following (8), the corresponding projection of the entire
mixture model is denoted by

M.
= Zaczfg(Am) )
=1

With these definitions, a VMMI objective function sim-
ilar to J in (5) is obtained with {FA(y)}Y, and
{G.(y)}Y_,. Namely, the original high-dimensional parame-
ters { i, Mei, Vei } are simply replaced by the parameters of
the reduced set {a.;, Am.;, AV.;AT}. Then, for fixed values
of {Bej, pejs Tej}, each increment of J w.rt. the matrix
A will deliver a better projected set FA(Ax) in the sense
of the approximated mutual information. The goal of joint
reduction of both dimension and order of the models amounts
to a VMMI simultaneous optimization of the projection matrix
A and the parameters of {G.}Y

The VMMI objective function J (5) can be maximized with
respect to the projection matrix A and the parameter set of the
reduced models 0 ~ {B.;, ptej, Xe; }.1 by a gradient-based
optimization since all the required gradients have closed-form
expressions. Evidently, the objective function is not convex
and therefore its optimization should be done with some care
to avoid poor local maxima. In the following we derive closed
forms expressions for the optimization of the JVC-VMMI
objective function by the Generalized Probabilistic Descent
(GPD) algorithm that was shown to work well for Gaussian
mixtures [7].

To ensure non-negativity conditions and achieve better con-
vergence, the GPD technique defines the following transfor-
mations:

eWej

c=1,...,N. (9
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The advantage in GPD is that the optimization of
{Bej, thejs Bej}, can be performed through simple gradi-
ent ascent optimization of {wej, fic;, Xc; }2; without setting
additional external non-negativity constraints. Let us first men-
tion two intermediate calculations (named “association prob-
abilities”) that will be used next in the derivatives’ equations,
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The following derivatives are required. Their derivation
was carried out in [8] where some related derivation can be

found also in [7]. The gradient for the optimization of the
transformed weights is

N M,
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and the gradient for the transformed covariance matrices,
6‘92‘7 , are given below in Eq. (14) assuming the new means
flc; are already obtained in the gradient step after using (13).
Finally, the gradient expression with respect to the linear pro-
jection matrix A is obtained in Eq. (15). Equations (12) - (15)
provide analytical expressions for all the gradients required for
the optimization of 7. Depending on the application, gradient-
based updates can be jointly done for all the parameters along
iterations, or if desired, only the linear projection matrix can
be learned, through (15), subjected to a fixed embedding of
mixture components.

Notice that the update of A should be treated with caution.
In our experiments, we were required at times to apply some
preconditioning to the system in order to prevent the matrix
(AV.AT), in Eq. (15), from approaching singularity. In these
situations some rescaling of the given space can be performed
to ensure that |AV,; AT'| remains above some minimum value.
In addition, a proper regularization on the scale of A can also
be used.

IV. EXPERIMENTS IN VOWEL CLASSIFICATION

JVC-VMMI was tested in a vowel classification experiments
on samples from the TIMIT database. To neutralize effects
that are not related to pure GMM modeling, GMM models
where trained using the middle part of a phone segments. For
each phonetic class, the feature vectors from the middle part
of each phone occurrence (75% of the manually segmented
part) were pooled together and used to train a GMM. Testing
was performed on phonetic segments, where a feature vector
sequence {z1,...,zr}, taken from the middle part of the
vowel, was first transformed using y; = Ax;, and then scored
against the reduced model set. The score for each class c is

computed by
1 X
= f Z log Gc(yt),
t=1

and the sample was classified to the winner.

As references, the classic Linear Discriminant Analysis
(LDA) [11], and Neighborhood Components Analysis (NCA)
[16] were used. LDA and NCA follow significantly different
ideas. LDA naively assumes that all class distributions are
Gaussian with a single shared covariance. NCA, in difference,
does not make any assumptions on the number and size of
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data clusters. It maximizes a stochastic variant of a K -Nearest
Neighbor (KNN) score (using Leave-One-Out (LOO)), and order - 1 ordor - 2
can learn highly complex data structures. Often NCA outper- 75 P 75 s
forms the classic LDA in a KNN classification framework. 70 70

However, in situations of limited computational resources,
NCA presents a serious computational difficulty requiring,
for n samples, a magnitude of O(n?) Euclidian distance
calculations per iteration. Another problem with NCA is that,
although it works well in a KNN scheme, it can fail with small
parametric models, since in training it does not consider the
limited capacity of the final model. In our experiments, NCA
was trained with about 15,000 vectors per class. The reduced
model set is obtained with two independent steps. First the
linear transformation matrix A is trained using LDA or NCA
and afterwards the sought low-order GMMs are trained by
standard EM using the transformed low-dimensional vectors.
These two techniques are referenced next as LDA+EM and
NCA+EM, respectively.

We used the original data partition of 3696 training sen-
tences from which the vowel segments were extracted, for
model training. Testing was performed on vowels of the
remaining 1344 sentences. A 38-dimensional feature vector
of MFCC +A + AA was used. Since, for the original 38-
dimensional feature vector a phonetic models of around 128
components achieved best results, we focused on simplify-
ing 128-component GMMs into reduced-order models with
lower-dimensional feature vectors. All GMMs used diagonal
covariance matrices.

Figure 1 brings comparative results of vowel classification
tests, that included 7 English vowels taken from TIMIT:
/aa/, /ah/, /ael, /aol, /eh/, /ih/, and /iy/. The four plots relate
to different orders (number of components) of the reduced
models (1, 2, 8, and 16), while the x-axis of each plot indicates
the dimension of the new vector space (2, 4, 8, 16, 32, and the
full dimension of 38). An interesting, although not surprising,
observation is that LDA+EM outperforms NCA+EM in very
low-order models. In fact, LDA performance remains quite
stable and seems to be insensitive to model order increments,
whereas the NCA outperforms it as model order increases.
This outcome is in accordance with the conceptual differences
between the two methods. The experiments demonstrate that
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Fig. 1. Vowel classification accuracy. In the JVC-VMMI method, the original
models, of order 128 with vectors of dimension 38, is the source. The accuracy
of the original model is marked by “128G ref”.

the joint vector reduction and component reduction using JVC-
VMMI exhibits significantly better classification performance
in comparison to LDA+EM and NCA+EM. Note also that the
performance of JVC-VMMI keeps improving as long as the
target models’ order and space dimension keep increasing.

The superiority of the proposed method can be explained
by the fact that the linear transformation, used to reduce the
size of the feature vectors, is learned in conjunction with the
model in which it is used afterwards for the classification task.
Thus, the linear projection is optimized with the additional
knowledge related to model capacity (in other words, the
number of “dominant” clusters), a factor which seems to
be a significant differentiator between JVC-VMMI and other
methods that do not consider information about the final
model.

The JVC-VMMI offers a highly efficient way to obtain dis-
criminative dimensionality reduction without using the original
data samples. Its starts by “compressing” the data into clusters
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with a set of high-order models with a total number of com-
ponents M = Zivzl M.. After “compression” (having a set of
GMMs trained by maximum-likelihood), in each iteration of
the discriminative learning, these M corrjl\Ponents are scored
against a reduced set of a total R = )" | R. components.
Therefore, optimization complexity is proportional to M x R.
With this method the optimization complexity does not depend
on the number of samples.

30

20

Vi

Fig. 2. Visualization of GMM reduction using JVC-VMMILI. Linear projection
from dimension D = 38 to d = 2 of 64-order GMMs to 2-order GMMs of
4 closely-pronounced English vowels: /aa/, /ah/, /ae/, and /ao/.

An attractive feature of JVC-VMMI is its possible use as
a visualization tool. Minding that the JVC-VMMI procedure
tries to discriminate between the components of different
classes, JVC-VMMI admits insightful visualizations, having
the flexibility of changing the number of underlined compo-
nents. Figure 2 presents an example for such visualization. The
original Gaussian components, that were projected onto a 2-
dimensional space are drawn, and then the GMMs of reduced-
order to 2 Gaussians each, are drawn on top of them. We
used diagonal covariances, both for the original models and for
the reduced-order models. Hence, the resulting rotation of the
transformed Gaussian components is caused by the projection
matrix A, that was optimized to discriminate classes in a
constrained 2-order mixture model structure. More insights can
be gained by exploring more clusters in the low-dimension
space, or getting visualizations at different stages along the
steps of the JVC-VMMI optimization.

V. CONCLUSION

In this paper we have extended the framework of variational
maximum mutual information (VMMI) to support linear di-
mensionality reduction jointly with component reduction. The
method, dubbed JVC-VMMI, discriminatively simplifies mod-
els for classification tasks. The presented experiments show
that the joint optimization of the projection matrix, together
with the embedding of model parameters, is significantly
more powerful than methods that do the vectors reduction
before and irrespectively from the planned low order of the

models in the classification task. While the JVC-VMMI was
designed also to compact the number of components of the
mixture models, this framework may be useful also solely
for dimensionality-reduction. All over, the framework offers
new and more flexible tradeoffs of computational complexity,
model capacity, and classification performance.
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