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Abstract—This work presents a new approach, based on Graph
Signal Processing, to estimate the direction of arrival (DoA) of
an incoming narrowband signal hitting on an array of sensors.
By building directed graphs related to both a uniform linear
sensor array and a time series representing the signal at each
sensor, we use the concepts of graph product and graph Fourier
transform to form an objective function from the coefficients
of the signal represented in an eigenvectors basis. Simulation
results have shown that the method achieves estimations with
competitive precision in comparison to classical DoA estimation
methods, and good results being obtained even in presence of
multipath and interfering. The proposed method is suitable for
parallel implementations and its computational complexity tends
to decrease when used repeatedly.

Index Terms—Direction of arrival, array signal processing,
Graph Fourier Transform, narrowband DoA estimation

I. INTRODUCTION

Graph Signal Processing (GSP) develops tools for modeling

massive amounts of data and their complex interactions [1].

In traditional spectral graph theory (SGT), eigenvalues (spec-

trum) and eigenvectors of the adjacency and Laplacian matri-

ces of a given graph are used to analyze the structure of that

graph [2]. In GSP, signals are processed over an irregular data

domain, a graph representing signal plus structure. Interesting

questions about GSP include concepts of translating a signal

on a graph and simplifying sensor networks [3], [4]. While in

classical signal processing a signal translation is implemented

by performing a change of variables (time delay), in graph

signal processing the idea of translation is naturally more

challenging since it depends on what shall be defined as an

ordered set of nodes [3]. Nevertheless, it is interesting to

note that the use of spectral methods, which depend on the

calculation of eigenvalues and eigenvectors of graphs, have
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already been proposed for the simplification of graphs [5]. For

the same purpose, the concept of diffusion distance in graphs

was applied [6], which is also used by [7] for the construction

of a spectral method for data dimensionality reduction. That

method was employed in [8] to locate a sound source in a

controlled environment, without spatial information provided

by a microphone array. The latter seems to be one of the first

works to deal with a problem similar to DoA estimation, using

the spectrum of a graph.

High-resolution narrowband DoA estimation sub-space

methods, such as MUSIC [9] and ESPRIT [10], rely on the

eigendecomposition of the autocorrelation matrix of the input

signal. This paper proposes an approach to estimate the DoA

of a signal impinging on a uniform linear sensor array, by

means of concepts such as graph product and Graph Fourier

Transform (GFT). The array of sensors is interpreted as a

graph and a GFT is applied on the input signals stacked as a

vector, x. By obtaining a suitable adjacency matrix A such

that, for a single sinusoidal incoming signal, we could write

x = Ax. We devise a DoA estimation algorithm that takes

advantage of the fact that vector x, in this particular case, is

an eigenvector of matrix A. Our experimental results show that

this method is also valid for a more realistic scenario using

a modulated signal, and also including other factors such as

noise, multipath, and interference.

The rest of the paper is organized as follows. Section II

presents the fundamentals of GSP followed by a description

of the graph models of a uniform linear array in Section III.

Section IV addresses the DoA estimation problem, while

simulation results and conclusions are summarized in sections

V and VI, respectively.

II. FUNDAMENTALS OF GRAPH SIGNAL PROCESSING

A graph G = (V,E,W ) is a set of nodes V and edges E, as-

sociated with a weight function W that represents a measure of

similarity between connected nodes. Data or signals on a graph
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are defined as a collection of samples s = {s1, s2, ..., sN},

associated to each node V = {v1, v2, ..., vN} of the graph.

Operations such as shifts, filtering, and Fourier transform

can be define by means of graph Laplacian or adjacency

matrices. The Laplacian matrix is employed in the case of

undirected graphs with real and non-negative weights [3],

whereas adjacency matrix is more usual for directed graphs, as

is the case described in this paper. For that reason, operators

used in the discussion that follows are devised based on an

adjacency matrix. For further information refer to [3], [4].

A. Graph Fourier Transform

The classical Fourier transform consists in writing a given

function as a weighted sum of complex exponentials, the

eigenfunctions of the one-dimensional Laplace operator. The

discrete-time Fourier transform (DTFT) is based on orthonor-

mal eigenvectors computed by diagonalizing the cyclic shift

matrix C [11]. The eigenvalues associated to these eigenvec-

tors are the frequencies of the transform. A graph Fourier

transform (GFT) is defined similarly, by using the eigenvectors

of the adjacency matrix A, which then become the frequency

components of the transformation. Thus, given that the eigen-

decomposition A = VΛV
−1 exists, Λ being the diagonal

matrix whose diagonal entries are the eigenvalues of A and V

the matrix whose columns are the eigenvectors of A, the GFT

of a signal s is computed by ŝ = V
−1

s such that the graph

signal can be written as s = ŝ1v1 + ŝ2v2 + · · ·+ ŝNvN [4].

Note from the previous expression that vector vn is the n-th

eigenvector of matrix A. Also, whenever the adjacency matrix

is Hermitian, there exists a unitary eigenvector matrix V such

that V−1 = V
H [12].

III. GRAPH MODEL FOR NARROWBAND SIGNALS

Consider, without loss of generality, a uniform linear array

(ULA) of M microphones as depicted in Fig. 1, where the pro-

cessing block after the A/D converter is an analytical bandpass

filter centered at ω0, the central frequency of the incoming

narrowband signal. This block is designed to filter out the

negative portion of the input signal spectrum, such that a mul-

tiplication by a complex exponential e−jω0τ results in a delay

of τ samples. In the simple case of xm(t) a single cosine, the

signal from the m-th microphone after the bandpass filter can

be expressed as xm(k) = ejω0ke−jω0(m−1)τ . Assuming an

angle θ (the DoA), the delay in number of samples is computed

by τ = d cos(θ)fs/vs, where d is the distance between two

consecutive microphones, fs is the sampling frequency, and vs
is the speed of sound. The DoA estimation problem consists

of obtaining an estimate of angle θ from the delays between

microphones and other signal parameters. Even though such

problem can be solved by simple beamscan algorithms such as

Delay-and-Sum (or Bartlet beamformer) [13], or by spectral

based algorithms such as MUSIC [9] and ESPRIT [10], our

motivation here is to propose a new approach to estimate

DoA based on graph Fourier transform. The idea is to model

both the array sensor (ULA) and the time series (signal) as

directed graphs and to compute the GFT of the graph product

obtained by relating space and time dimensions. This process

is described in the following.

x1(t)

x2(t)

xM (t)

x1(k)

x2(k)

xM (k)

θ

θ

θ
d

wavefront

MIC 1

MIC 2

MIC M

d cos θ

fs

fs

fs

SNAPSHOT at instant k

A/D

A/D

A/D

Fig. 1: Uniform Linear Array with M microphones.

A. Space-domain Adjacency Matrix

The relationships between signals from the M microphones

in the ULA (space dimension) are modeled by using a sparse

directed graph, in which each microphone is connected only

with its closest neighbours, except for the sensors in the

extremities, which are also connected to each other. So, in this

equation there are only two nonzero elements per row. Other

representations do exist, which yield adjacency matrices with

different structures and degrees of sparsity.

In the adjacency matrix A1, the neighborhood criterion is

given by delays or advances, and the relationship between

microphones is determined by complex exponential, z = ejω0τ

and its conjugate z∗, so that if A1(mi,mi+1) = z, then

A1(mi+1,mi) = z∗. For the first sample, we impose space-

domain relationship with the second and last sensors by means

of the complex exponential ejω0τ and ej(M−1)ω0τ . Finally, for

the last sample, we use e−j(M−1)ω0τ and e−jω0τ . The space-

domain adjacency matrix is given as

A1 = 1
2





























0 ejω0τ 0 · · · ej(M−1)ω0τ

e−jω0τ 0 ejω0τ
. . . 0

0 e−jω0τ
. . .

. . .
...

...
. . .

. . . 0 ejω0τ

e−j(M−1)ω0τ 0 · · · e−jω0τ 0





























.

The resulting graph is shown on Fig. 2a.

In order to motivate the choice of the adjacency matrix

and the division by 2 in the previous equation, we define

the snapshot at instant k (see Fig. 1) as vector x(k) =
[x1(k) · · ·xM (k)]

T
, such that, assuming the input signal is a

single tone, we can write x(k) = A1x(k).
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B. Time-domain Adjacency Matrix

The set of N samples of the signal captured by the m-

th microphone is a time series which can also be interpreted

as a directed graph. The idea is similar to that developed

for the space-domain graph. We build an N × N state-

transition matrix. In this equation, similarly as in the A1

adjacency matrix, there are only two nonzero elements per

row. Matrix A2 can be interpreted as the adjacency matrix

that contains information about the graph model for each time

series. This sparse adjacency matrix holds the neighborhood

information between adjacent samples of the signal xm(k),
xm(k − 1) and xm(k + 1), also in function of a complex

exponential, z = e−jω0 . Thus, if A2(ni, nj) = z, then

A2(nj , ni) = z∗. For the first sample, we impose their time-

domain relationship with the second and the last sample by

means of the complex exponential e−jω0 and e−j(N−1)ω0 .

Finally, for the last sample, we use ej(N−1)ω0 and ejω0 . The

time-domain adjacency matrix is given as

A2 = 1
2



















0 e−jω0 0 ··· e−j(N−1)ω0

ejω0 0 e−jω0
. . . 0

0 ejω0 0
. . .

...
...

. . .
. . .

. . . e−jω0

ej(N−1)ω0 0 · · · ejω0 0



















.

If we define a vector from all samples of xm(k), 0 ≤ k <
N , xm = [xm(0) · · ·xm(N − 1)]

T
, the choice of this adja-

cency matrix, was motivated by the fact that, assuming again

that the input signal xm(t) is a single cosine, xm = A2xm.

The time-domain graph for the m-th sensor is depicted in

Fig. 2c.

C. The Space-time Graph

Graph products can be used for network modeling [14],

image processing [15] and biological computation [16]; more

recently, they were proposed as tools for parallelization and

vectorization techniques [17]. In this work, we apply the

Kronecker product to relate adjacency matrices, A1 and A2,

computing an adjacency matrix A corresponding to a space-

time graph, whose nodes are shown in Fig. 2b. Given the sizes

of matrices A1 and A2, M × M and N × N , respectively,

the Kronecker product, an MN ×MN matrix, is denoted by

A⊗ = A2 ⊗A1 and is computed according to [18]. Fig. 2b

shows nodes and its relations with other nodes in the graph

generated by Kronecker product using matrices A1 and A2.

Note that the actual graph is directed, so each edge in the figure

is actually two edges with opposing directions and complex

conjugated weights.

If we stack all available samples (N samples from each of

the M microphones) as in

x =
[

x
T(0) · · ·xT(N − 1)

]T
, (1)

with x(k) as previously defined, it is possible, assuming the

incoming signal a single cosine xm(t), to prove that x is an

eigenvector of A⊗ = A2⊗A1 with unit eigenvalue [19], that

is, x = A⊗x.
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Fig. 2: a) Space-domain graph b) Nodes of the space-time

graph. c) Time-domain Graph.

Therefore, A2 ⊗A1 is a good candidate for an adjacency

matrix of the space-time graph. Conversely, we also claim that

A1 ⊗ A2 would be a possible adjacency matrix in case we

form the extended input signal vector as in
[

x
T
1 · · ·x

T
M

]T
, xm

as previously defined. Other graph products commonly used

in the literature [17] are the Cartesian product A× and the

strong product A⊠ defined, respectively, as A× = A2×A1 =
A2 ⊗ IM + IN ⊗A1, and A⊠ = A2 ⊠A1 = A⊗ +A×.

The three products have closely related eigendecomposi-

tions. Assuming that vector x is formed from single-tone com-

plex exponentials and defined as in Eq. (1), it is an eigenvector

associated with eigenvalue λ = 1 of both matrices A2 ⊗ IM

and IN ⊗ A1. Therefore the GFT has the same frequency

components, regardless the graph product. In this work, We

only consider the Kronecker product A = A⊗ = A2 ⊗ A1

for constructing the space-time adjacency matrix. In this case,

matrix A is not circulant and the space-time graph is not a

cyclic graph [20].

IV. GFT APPLIED TO DOA ESTIMATION

As previously noted, for a single tone incoming signal,

vector x is an eigenvector (with unit eigenvalue) of the space-

time adjacency matrix A. Therefore, the spectral decomposi-

tion A = VΛV
H leads to a GFT x̂ = V

H
x being nonzero

only for the position of the unit eigenvalue corresponding

to the eigenvector x. This is true provided that matrix A,

which is a function of ω0 and τ , corresponds to the correct

frequency and the correct angle of arrival; otherwise, one may

not expect that x is an eigenvector of A. The frequency is

assumed correct once the signal is processed through a narrow
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Fig. 3: GFT representation of an extended signal vector

obtained from a 1kH tone impinging on 3×4 standard ULA at

70.3◦: (a) multiple peaks when GFT comes from an incorrect

DoA, and (b) a single peak when the GFT corresponds to the

correct DoA.

bandpass filter, see Fig. 1. The effect of using the correct angle

of arrival can be observed in Fig. 3a, where matrix A was

calculated for θ = 30◦, whereas the wavefront hits the array

at θ = 70.3◦. Conversely, for the correct DoA, the energy

of x̂ (its norm) is concentrated in one GFT coefficient, as

seen in Fig. 3b. This fact motivated us to use an objective

function over variable θ, hereinafter referred to as piquancy

function, defined as ξ(θ) = 1/‖x̂−‖, where θ varies from

0◦ to 180◦, ‖x̂−‖ =
√

∑

i,i6=ieig
|x̂i|

2
and ieig is the index

of the eigenvector (column of V) associated with the unitary

eigenvalue; also the absolute value of x̂i, the ith element of

x̂ = V
H(θ)x, was normalized such that

∣

∣x̂ieig

∣

∣ = 1.

We can apply properties of the Kronecker product to sim-

plify the way we obtain the eigenvector matrix V. Letting

A1 = V1Λ1V
H
1 and A2 = V2Λ2V

H
2 , if we compute

VK = V2 ⊗ V1 and ΛK = Λ2 ⊗ Λ1, the space-time

adjacency matrix can be written in a less complex way as

A = VKΛKV
H
K

[19], [21]. As V2 is independent of both θ
and incoming signal, it can be stored. V1 is a function of θ
but does not depend on the input signal and, therefore, we can

store in advance all possible V1(θ). This way the grid search

has complexity equivalent to computing the Kronecker product

(VK = V2 ⊗ V1) followed by matrix-vector multiplication

V
H(θ)x for each value of θ. More efficient methods than grid

search could be employed to further decrease computational

complexity.

V. EXPERIMENTAL RESULTS

In this section, we consider three scenarios, in all of them

we considered a standard ULA with M = 5 microphones,

N = 41 time samples per microphone and fs = 8kHz. In the

first scenario we used a sine wave with frequency fo=2kHz

impinging the array from θ = 70.3◦. In the second scenario,

was used a modulated signal using AM-DSB modulation with

the information represented as a 30 Hz sine wave. The last

scenario used the same modulated signal as before, but consid-

ered 3 multipath signals (same frequency of the interest signal

but with -6dB, -8dB and -9dB impinging from θ = 20.2◦,

100.7◦ and 60.1◦, respectively) and an interfering signal, with

noiseless

SNR=5dB
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(d)

Fig. 4: Piquancy function (normalized) of a signal with DoA

(θ = 70.3o) noiseless and SNR=5dB: (a) single tone (b)

modulated signal (c) modulated signal with multipath (d)

similar to the previous one, but including interfering signal.

a frequency different from that of the signal of interest, but

inside the range of the bandpass filter, see Fig. 1, with half

the power of the signal of interest arriving at θ = 120◦.

The graph matching the Kronecker product has MN = 205
nodes. For a noiseless signal, it is possible to verify that the

method described in Section IV estimates the correct DoA as

suggested in Fig. 4a, where the eigenvalue unitary was the

last entry in the diagonal matrix Λ. Also, in the same figure,

we present the piquancy function for a noisy (5dB) signal. In

Fig. 4b we show the effect of using a modulated signal instead

of a pure tone. Fig. 4c displays the effect of multipath signals,

and Fig. 4d exposes the behaviour of piquancy function to the

third scenario, in this scenario we can see that GSP method can

indicates the existence of a second source (interfering signal)

by the presence of another peak in the piquancy function.

By adding normal random noise (AWGN) to the input

signal of interest, the performance of the proposed method is

comparable to results obtained by classical methods. Fig. 5a

shows the root-mean-square error (RMSE) obtained as an

average of 1000 independent runs with signal-to-noise ratio

(SNR, in dB) equal to 20, 5 and 2. The RMSE was calculated,

for each method, computing the difference between each

output θ that maximizes the function ξ(θ) and the reference

value (θ = 70.3o). DoA estimation methods Delay-and-sum

(DS), MUSIC, ESPRIT and the proposed GSP-based were

evaluated.

As can be seen in Fig. 5a and Fig. 5b the performance using

modulated signal is very similar to the pure sine. So, although

the theory was developed considering a pure sine as incoming

signal it also works for narrowband signals. Furthermore, it

2019 27th European Signal Processing Conference (EUSIPCO)
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Fig. 5: RMSE after 1000 independent runs. a) first scenario,

single tone b) second scenario, modulated signal.

TABLE I: Performance comparison in third scenario, using

a modulated signal, multipaths and interfering signal: RMSE

and error variance calculated after 1000 independent runs.

SNR = 2dB SNR = 5dB SNR = 20dB

RMSE
Error
Variance

RMSE
Error
Variance

RMSE
Error
Variance

D&S 3.392 0.4200 3.383 0.211 3.363 0.0063

MUSIC 3.459 0.4493 3.401 0.1901 3.383 0.0067

ESPRIT 6.548 2.1926 6.373 0.9716 6.282 0.0275

GSP 3.408 0.3970 3.385 0.1996 0.334 0.0060

is clear that, depending on the SNR, the GSP method may

achieve better results than the classical methods tested herein.

The simulation results from the third scenario are depicted

in Table I, where we see that, for the application at hand

and the objective measures chosen therein, the performance

of the proposed algorithm is among the best results compared

to classical algorithms in a more harsh scenario including

multipath and interference. Another interesting fact is that

multipath and interfering signals have larger impact in the

RMSE, while noise has larger influence in the error variance.

VI. CONCLUSION

This paper introduces a new DoA estimation method based

on Graph Signal Processing. We propose a graph representa-

tion of the spatial shift of the set of sensors such that, for a

single sinusoidal input signal, the signal vector corresponds to

an eigenvector of the adjacency matrix. The graph representa-

tion of the time shift among neighboring samples is such that

there is no need for arranging the data in a cyclic buffer where

the rightmost sample corresponds to the one to the left of the

first sample. We employ the concept of graph product to relate

the ULA snapshot and the time series representing the signal

received by each sensor. Due to the structure of the proposed

space-time graph, the Graph Fourier Transform is used to

devise an objective function to be optimized by a line search

in order to estimate the DoA. This method favors parallel

implementations, more suitable for processing of huge amount

of data, but eigenvectors of the adjacency matrix for each

DoA can be calculated offline, thereby reducing computational

complexity significantly in a non parallel implementation.

Simulation results show that the proposed method works well

for modulated signals and is suitable for harsh environments,
particularly under the presence of multipath and interfering

signals.
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