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Abstract—Convolutional Neural Networks (CNNs) have had
great success in many machine vision as well as machine
audition tasks. Many image recognition network architectures
have consequently been adapted for audio processing tasks.
However, despite some successes, the performance of many of
these did not translate from the image to the audio domain.
For example, very deep architectures such as ResNet [1] and
DenseNet [2], which significantly outperform VGG [3] in image
recognition, do not perform better in audio processing tasks
such as Acoustic Scene Classification (ASC). In this paper, we
investigate the reasons why such powerful architectures perform
worse in ASC compared to simpler models (e.g., VGG). To this
end, we analyse the receptive field (RF) of these CNNs and
demonstrate the importance of the RF to the generalization
capability of the models. Using our receptive field analysis,
we adapt both ResNet and DenseNet, achieving state-of-the-
art performance and eventually outperforming the VGG-based
models. We introduce systematic ways of adapting the RF in
CNNs, and present results on three data sets that show how
changing the RF over the time and frequency dimensions affects
a model’s performance. Our experimental results show that very
small or very large RFs can cause performance degradation, but
deep models can be made to generalize well by carefully choosing
an appropriate RF size within a certain range.

Index Terms—CNN, acoustic scene classification, deep learn-
ing, machine learning

I. INTRODUCTION AND RELATED WORK

In image processing, deep Convolutional Neural Networks
(CNNs) have revolutionized the way image recognition tasks
are addressed. A central source of their power is the ability to
learn multi-level internal features and representations. While
lower-level network layers learn to detect simple features such
as edges, deeper layers combine these features to detect higher-
level concepts such as textures, shapes, and objects.

The current state of the art in this domain are ResNet [1]
and DenseNet [2] variants, which outperform earlier (and less
deep) VGG-based [3] architectures by a significant margin.
This is mainly because they address shortcomings of VGG
such as the vanishing gradient. However, in acoustic tasks
(e.g., Acoustic Scene Classification; ASC) the state of the art
is still heavily dominated by VGG-like architectures [4]–[7].

For instance, Eghbal-zadeh et al. [4] adapted the VGG archi-
tecture taken from the computer vision domain and achieved
good performance in acoustic scene classification, using spec-
trograms as network input. Hershey et al. [8] compared various

well-known image recognition CNN architectures on a large-
scale dataset of 70M audio clips from YouTube. They showed
that on such a large dataset, very deep CNNs such as ResNet-
50 can perform very well. However, as we will show later,
training such deep architectures on smaller datasets results
in heavy overfitting on the training samples. Because of
this issue, many state-of-the-art ASC systems use shallower
CNN architectures [4]–[12]. Pons et al. [13] investigated the
effect of filter shapes in shallow CNN architectures in music
classification tasks. They proposed to change the shape of
convolutional filters in order to restrict CNNs to learn either
temporal or frequency dependencies in the data.

In this paper, we systematically investigate the effect of re-
stricting the Receptive Field (RF) on the time or the frequency
dimensions in deep and complex CNN architectures. We show
that for relatively smaller datasets, CNNs tend to overfit if their
RF covers large areas of the spectrograms. Moreover, limiting
the RF over the frequency dimension helps output neurons
generalize better to unseen samples. We introduce an approach
to adapt deep CNN architectures for ASC by restricting their
RF, since the RF grows when the depth of a CNN increases.
We apply this method on a deep DenseNet [2] and ResNet [1]
architecture and compare classification performance before
and after this adaptation. Furthermore, we modify a number of
convolutional layers in a ResNet architecture by changing their
filter shapes to obtain a specific RF. The filter shape controls
the RF of its layer over the time or frequency dimensions,
while the number of modified layers controls the RF of
the whole network. This technique allows us to study how
gradually increasing the RF of a CNN affects its performance.

II. THE EFFECT OF THE RECEPTIVE FIELD

A. The Receptive Field in CNNs

In fully-connected layers, each neuron is affected by the
whole input. In contrast, in convolutional layers each neuron
has a strictly limited ‘field of view’ (RF); input values outside
of this RF cannot influence the neuron’s activation. The RF
in general includes input values in the spatial as well as the
channels dimensions. However, in this paper, we will keep our
focus on the spatial dimensions (the frequency and the time
dimension of spectrograms, in the case of audio).
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Fig. 1. The Effective Receptive Field (ERF) of different CNN architectures trained on DCASE18 (explained in Section IV-A).

Within a convolutional layer, the spatial RF of a neuron is
determined by its filter size: the bigger the filter, the more
activations it can see from the previous layer. As the CNN’s
depth increases by stacking more convolutional layers, the RF
of a neuron w.r.t. the input layer – that is, what the neuron
‘sees’ of the input layer – is affected by various factors such as
the filter size, the stride and the dilatation of all the previous
layers. The maximum RF size can be calculated using the
following equation:

Sn = Sn−1 ∗ sn
RFn = RFn−1 + (kn − 1) ∗ Sn

(1)

where sn, kn are stride and kernel size of layer n, respectively,
and Sn, RFn are cumulative stride and RF of a unit from layer
n to the network input. While the formula above gives the
maximum RF each neuron has access to, a given neuron may
not actually use all of it. The set of input pixels or units that
effectively influence a neuron is called its Effective Receptive
Field (ERF). Luo et al. [14] showed that neurons are more
affected by the input pixels around the center of the RF, since
these have more paths to the neuron on both the forward and
the backward pass. This is important considering that in some
cases the maximum RF of a network even exceeds the input
dimensions. Further, they propose a method for computing
the Effective Receptive Field (ERF) of a trained model. They
back-propagate a gradient signal from the output layer through
the network to the input. In order to compute the ERF on
models trained on audio spectrograms, we follow the approach
proposed by Luo et al. [14]. We back-propagate a gradient
signal of 1 in one output spatial pixel (i.e. before the global
averaging) to the inputs. For visualisation, we average this
gradient for all the test set samples and plot the normalized
average. Figure 1 shows the ERF for different CNNs trained on
the ASC task, the details of their architectures is explained in
Section IV-A. As can be seen, the ERFs can be vastly different
depending on the network architecture.

B. Modifying the Receptive Field of a CNN

Equation (1) shows that there are various ways to modify
the RF of a CNN. In this paper, we investigate how changing
the RF influences the performance of a model in the task of
acoustic scene classification. In order to achieve this goal, we
follow two approaches to change the RF either by altering the
filter sizes or by adding sub-sampling layers. We detail these
two approaches as follows.

1) Changing the filter sizes: Starting from a CNN archi-
tecture we change the filter sizes of some layers kn from 3x3
to 1x1. One side effect of changing the filter sizes, is that it
changes the number of network parameters.

2) Changing the sub-sampling layers: We add more max-
pooling layers to increase the accumulative stride Sn. This
results in changing the RF on the network, without changing
the network’s number of parameters.

III. EXPERIMENTAL SETUP

In this section we detail the datasets, architectures and
training procedure we follow in our experiments.

A. Datasets

We tested our hypotheses on multiple datasets with different
properties, scales, and of increasing difficulty.

1) DCASE2016: The acoustic scenes classification task of
DCASE 2016 [15] is to recognise 15 possible acoustic scenes
from 30 second snippets of audio. There are 1170 training and
390 test examples, for a total of 9 hours 45 minutes of training
data and 3 hours 15 minutes for evaluation.

2) DCASE2017: The DCASE 2017 [16] training set com-
prises both the training and evaluation sets of DCASE 2016.
The evaluation data is a set of new recordings taken at a
later time. This introduces a distribution mismatch between
the training and unseen test data, making for a more difficult
learning task. Additionally, the audio clips are cut into 10
seconds samples totaling 4680 training samples (13 hours) and
1620 testing samples (4.5 hours).
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3) DCASE2018: DCASE 2018 Task 1 [17] consists of
around 17 hours of audio for training (6122 10-second clips)
and 7 hours for evaluation (2518 10-second clips). The data
was recorded in more diverse locations compared to the
previous challenges. Each recording belongs to one out of 10
possible classes.

B. Network Architectures

For our experimental investigations, we used three different
CNN architectures which were successful in the computer
vision domain.

1) VGG: Architectures similar to VGG [3] are very popular
in the DCASE community and the audio processing commu-
nity in general. This is mainly due to their good performance
in tasks such as ASC [4]–[7], audio tagging [9], [10], and
event detection [11], [12]. We make an effort to explain this
good performance by the fact that deeper CNNs have a bigger
RF as explained in Section V.

2) ResNet: ResNet [1] adds residual connections between
convolutional layers, this counters the vanishing gradient prob-
lem of deep CNNs. It outperforms VGG in computer vision
tasks. In contrast, top performing systems in acoustic scene
classification DCASE challenges [4], [6], [7] are still based on
VGG variants. We will show in Section III how we adapted
ResNet-28 (with 28 layers) to finally outperform VGG models.

3) DenseNet: DenseNet [2] solves the vanishing gradient
problem by concatenating the outputs of all previous convo-
lution layers on the channels dimension. DenseNet variants
achieves state-of-the-art results on computer vision tasks.

C. Setup

For all experiments, we set up our training framework fol-
lowing the current state of the art [6], [7]. All the experiments
used the same setup, to ensure a fair comparison.

1) Data Preparation: The input is down-sampled to 22.05
kHz and subjected to a Short Time Fourier Transform (STFT)
with a window size of 2048 and 25% overlap, followed by a
Mel-scaled filter bank on perceptually weighted spectrograms.
That results in 256 Mel frequency bins and around 43 frames
per second. The input frames are normalized to zero-mean and
unit variance according to the training set.

2) Optimizing: The Adam optimizer [18] is used for a total
of 350 epochs, with a starting learning rate of 1× 10−4. The
learning rate decays linearly from epoch 50 until 250 where it
reaches 5× 10−6. Then we train for another 100 epochs with
the minimum learning rate 5× 10−6.

3) Data Augmentation: We use mix-up [19] since it was
shown to improve the generalization of the models and to
help in preventing overfitting.

4) Obtaining Results: The models are evaluated on the test
set after 350 epochs of training. By using mix-up and batch
normalization in the architectures, we ensure that models are
not overfitting on the training set. Each experiment is repeated
3 times for Table I and 6 times for Figure 2. We report the
mean and the standard deviation of these runs.

TABLE I
ARCHITECTURES PERFORMANCE ON DCASE DATASETS

DCASE16 DCASE17 DCASE18
Loss

DenseNet [2] 0.58± 0.02 1.31± 0.17 0.92± 0.04
ResNet [1] 0.67± 0.06 1.19± 0.06 1.02± 0.05

VGG [3], [6] 0.69± 0.05 1.05± 0.04 0.83± 0.03
RN1 0.57± 0.02 0.94± 0.09 0.67± 0.03
RN2 0.50± 0.02 0.91± 0.04 0.71± 0.03
RN3 0.53± 0.04 0.89± 0.02 0.67± 0.00
DN1 0.51± 0.01 0.90± 0.04 0.72± 0.06

Accuracy
DenseNet [2] 83.68± 0.90 63.48± 4.96 71.55± 0.85

ResNet [1] 83.17± 0.91 67.19± 1.72 71.05± 0.87
VGG [3], [6] 82.99± 0.90 67.90± 1.31 74.56± 1.01

RN1 85.98± 1.32 71.11± 1.19 77.34± 1.53
RN2 87.09± 0.53 72.41± 0.96 75.71± 0.70
RN3 86.51± 1.05 71.74± 0.85 77.61± 0.22
DN1 86.07± 0.65 72.24± 1.00 76.39± 0.14

IV. EXPERIMENTS

A. Modifying the “Vision Architectures”

In this section we report on a series of experiment whose
purpose is to investigate the effect of the RF on the perfor-
mance of a CNN architecture. In particular, we investigate how
and to what extent we can push a CNN’s generalization by
calibrating its RF. We do this by evaluating modified ResNets
and DenseNets on several benchmark datasets from the world
of acoustic scene classification.

Table I shows the performance of the “vision architectures”
ResNet and DenseNet before and after adjusting the RF to
match the VGG-like architecture proposed by Dorfer et al. [6].
We modified the deep architectures from Section III-B to
obtain similar RFs as [6], as described below. These straight-
forward modifications boost the performance across all archi-
tecture and datasets. The adopted models outperform both the
VGG baseline as well as their vision-inspired predecessors.

1) ResNet: ResNet is usually deeper than VGG, and thus
has a larger receptive field. There are many ways to modify
ResNet to have a smaller RF; we chose the following:

• Making ResNet shallower (RN1 in Table II) We re-
moved tailing layers from ResNet after the RF of [6]
is reached. The resulting network looks similar to VGG,
but with residual connections; the network consists of
5 residual blocks of two convolutional layers each. The
resulting network has a total of 3, 258, 772 trainable
parameters, since we did not change the number of
channels in the new network.

• Changing filter sizes (RN2 in Table II) Instead of
removing layers from ResNet, We changed some filter
sizes from 3× 3 to 1× 1. Network RN2 has 12 residual
blocks of two convolutional layers each. 7 residual blocks
have 3 × 3 filters in the first convolutional layer and
1×1 and the second layer; the rest of the residual blocks
consist only of 1×1 convolutions. In other words, we kept
the depth of ResNet but changed many filter sizes to 1×1.
RN2 has a total number of parameters of 6, 053, 780.
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TABLE II
MODIFIED RESNET ARCHITECTURES

RB Number RB Config
RN1 RN2 RN3

Input 5× 5 stride=2
1 3× 3, 1× 1, P 3× 3, 1× 1, P 3× 3, 1× 1, P
2 3× 3, 3× 3, P 3× 3, 1× 1 3× 3, 3× 3, P
3 3× 3, 3× 3, 3× 3, 1× 1 3× 3, 3× 3
4 1× 1, 1× 1, P 3× 3, 3× 3, P
5 3× 3, 3× 3, P 3× 3, 1× 1 3× 3, 1× 1
6 3× 3, 1× 1 1× 1, 1× 1
7 3× 3, 1× 1 1× 1, 1× 1
8 3× 3, 1× 1, P 1× 1, 1× 1
9 3× 3, 1× 1 3× 3, 1× 1 1× 1, 1× 1
10 1× 1, 1× 1 1× 1, 1× 1
11 1× 1, 1× 1 1× 1, 1× 1
12 1× 1, 1× 1 1× 1, 1× 1

RB: Residual Block, P: 2× 2 max pooling after the block.
RB number 1-4 have 128 channels, RB number 5-8 have 256 channels,
RB number 9-12 have 512 channels.

• Changing the sizes of the tailing filters RN3 is similar
to RN1, except that we do not delete the tailing layers
but instead only change their filter sizes to 1× 1.

2) DenseNet: Unlike ResNet and VGG, estimating the
effective RF of DenseNet is non-trivial. It cannot be inferred
directly from the maximum possible RF (1) because of the
dense connections [2]. Each convolutional layer projects its
input into feature maps with a small number of channels (the
‘growth rate’ in [2]). This will increase the maximum RF
but will have a small effect since only few feature maps have
this RF. We increased the growth rate to 128 and reduced the
network depth in order for its maximum RF to match Dorfer et
al. [6]. The resulting network DN1 has 5, 269, 902 parameters.

B. The Effect of Systematic Changes of the RF

For more detailed insight, Fig. 2 shows the testing loss and
accuracy for various configurations of our ResNet, modified
by systematically varying the network filters or the pooling:

1) Changing filters in both dimensions: Starting from the
last layer of a network with all 3 × 3 filters, we modify
the filters from 3 × 3 to 1 × 1. This will affect the RF on
both dimensions, and results in networks with maximum RFs
(Section II) ranging from 23× 23 to 583× 583 pixels.

2) Changing filters in the time dimension only: Here, we fix
the RF on the frequency dimension to the one in the Dorfer et
al. model [6] (i.e., 135 pixels). We only change the filter sizes
in the time dimension. This results in networks with maximum
RFs ranging from 23× 135 to 583× 135 pixels.

3) Changing filters in the frequency dimension: The proce-
dure is analogous to the previous one, but using the frequency
dimension instead of time. This results in networks with
maximum RFs ranging from 135× 23 to 135× 583 pixels.

4) Changing pooling layers: Here, we add or remove
pooling layers. Pooling layers have a stride of 2; adding one
thus doubles accumulative stride (see Eq. (1)) in all layers
that follow the pooling. Pooling layers do not affect the
number of parameters of the network, hence we use them to
demonstrate the effect of the RF without changing the number

of parameters. However, adding a pooling layer downsamples
the spatial dimensions by the provided factor and the RF of
all subsequent layers will be affected by this change. Because
of these architectural limitations, we only provide the feasible
steps in this experiment. Figure 2 shows the results of networks
with RFs of 67× 67, 135× 135, and 507× 507.

V. DISCUSSION

A. The Effect of the Receptive Field

Figure 2 shows the effect of systematic changes to the RF,
on three ASC datasets. It can be seen that there is a certain
range of RF sizes that permit the CNN to generalize and pre-
dict well. On the one hand, RFs that are too small impair the
CNN’s performance. Our intuition is that output neurons do
not collect enough information to make the optimal decision
and thus underfit even the training data. On the other hand,
when the RF grows larger than this range – usually in the case
of the CNN growing deeper – the CNN overfits the training
data and fails to generalize to new samples. We observed
this in the training loss (not reported) which decreases the
bigger the RF is, while the performance deteriorates. This
effect is more clear in DCASE17 and DCASE18 compared
to DCASE16. We explain this with the characteristics of the
datasets: in DCASE16, the test set has a similar distribution to
the training set, while in DCASE17 and DCASE18 the impact
of a (non-)optimal RF is magnified because of the distribution
mismatch between the test and training sets.

B. The Effect of Changing the RF over one Dimension

The plots also show that an optimal RF over the frequency
dimension makes the effect of increasing the RF over the
time dimension surprisingly minimal, provided that it is large
enough to capture the necessary information. A possible reason
may be that the training datasets have enough variance in the
temporal dimension of the learned features so that the model
does not overfit on long-term temporal dependencies in the
data. However, the opposite happens when shrinking/extending
the RF on the frequency dimension, despite an optimal RF
over time. Seeing the whole frequency range seems to lead the
CNN to overfit on the training data’s acoustic events, which
may differ in some frequency bins in the test recordings.

C. The Influence of the Number of Parameters

Finally, we see that using different CNNs with the same
number of parameters but with different RFs (Section IV-B4)
results in a performance that correlates with the results of the
previous section. This indicates that the effect on overfitting of
a larger RF is more significant than the number of parameters
for a given architecture. For example, RN1, RN2 and RN3
have different numbers of parameters but the same RF; they
perform similarly compared to other architectures.

VI. CONCLUSION

We investigated the relation between CNNs’ RFs over the
input spectrograms and their generalization on unseen samples,
for the acoustic scene classification task. We showed that
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Fig. 2. The effects of systematic changes to the receptive field of ResNet (averages and std. deviations over 6 runs). The dashed horizontal line is the
loss/accuracy achieved by the current state-of-the-art VGG architecture in this field [6], [9].

a large RF especially over the frequency dimension pushes
CNNs to overfit, while a smaller than necessary RF forces a
CNN to underfit the data and prevents it from learning deci-
sive features. Although many factors contribute to a CNN’s
tendency to generalize, we show that for a specific training
setup and network architecture, tuning the RF of the model is a
crucial factor for its performance. Following these guidelines,
we managed to tune state-of-the-art vision architectures that
so far failed to perform well on ASC, to match and outperform
current popular and state-of-the-art CNNs on this task.
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