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Abstract—The temporal dynamics of interference power is
studied in Poisson networks with slotted random access and
Rayleigh fading. Specifically, we analyze the occurrence of high
interference events (pikes) and the time in between (valleys). Our
main insight is that pikes arrive in bursts. This observation may
help in the design of reliability techniques.
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I. INTRODUCTION

The modeling and characterization of fading channels is a
well-studied field in communications engineering. A channel’s
space-time dynamics can be described by various proper-
ties, such as coherence time, decorrelation distance, average
fade duration (AFD), and level crossing rate (LCR). These
characteristics are essential in the design of communication
techniques: the decorrelation distance determines the antenna
placement in multi-antenna systems, while the coherence time,
AFD, and LCR are used to select interleaver depth, symbol
duration, slot duration, and packet length [1]. Deep fading
events hold particular interest, where the reception power falls
below the receiver sensitivity or other relevant thresholds.

In an interference-limited scenario, the problem is recip-
rocal, whereby events of high interference rather than low-
power periods are critical. Some expressions for the space-
time dynamics of interference are available (e.g., interference
correlation and interference coherence time [2–4]), but an
analysis of high interference events along with the corre-
sponding LCR and duration — i.e., how often the interference
changes from low to high (and vice versa) and how long
it remains high (or low) — has not been conducted thus far.
In this paper, we contribute to this field by investigating the
occurrence and duration of events of high interference (we call
them pikes) and the time between these events (valleys). The
categorization of interference into pikes and valleys is made
using a normalized threshold, and the analysis is conducted for
varying autocorrelation and mean power of interference. We
focus on networks with Poisson distributed nodes that perform
slotted message transmissions over a Rayleigh fading channel.
The simulation results provide insights into the behavior of
interference and may help to improve the design of reliability
techniques, such as channel coding and interleaving. Our
main insight is that pike events are not uniformly distributed
over time but rather tend to occur in bursts. A potential
generalization of this statement to other network models is
subject to ongoing work.

The paper is organized as follows: Section II addresses re-
lated work. Section III presents the network model. Section IV
analyzes interference pikes and valleys. Section V concludes.

II. RELATED WORK

Work on the outage duration in communications over fading
channels can be considered as related work. Expressions for
LCR and AFD exist for selection combining and maximal
ratio combining scheme over Rayleigh, Rice, and Nakagami
fading channels [5; 6]. The LCR and AFD are also analyzed
for a multi-hop relay network [7; 8]. However, co-channel
interference is not considered in these results. Expressions for
LCR and AFD in an amplify-and-forward relay network in the
presence of co-channel interference with Rayleigh fading [9]
and in interference-limited systems employing dual selection
and equal gain combining [10; 11] are available. The AFD
is analyzed for a general fading model, considering multi-hop
communication systems [12]. For a Rayleigh fading channel,
expressions for minimum outage duration are derived and
analyzed [13]. In all of these results, only a few interferers are
considered, and the correlation of interference is neglected.

III. NETWORK MODEL

A static wireless network is given with nodes distributed
by a Poisson point process (PPP) Φ with intensity λ. Time is
divided into slots indexed by t. Each node i ∈ Φ starts the
transmission of a message in a given slot independent of other
nodes, with a probability pi. A message is di slots long, and pi
is selected such that pidi ≤ 1. A Bernoulli random variable
γi(t) indicates whether node i is transmitting (γi(t) = 1) or
not (γi(t) = 0) in slot t. The transmission power κ is the
same for all nodes. The path loss from a node i at location xi
to a location x is `i = min(1, ‖xi − x‖−α), with a constant
path loss exponent α. The multipath propagation effects are
modeled by Rayleigh fading, represented by the i.i.d. exponen-
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Fig. 1: Interference power at origin with different thresholds.
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(a) Constant E[I(t)] with λ = 1
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Fig. 2: Mean duration of pikes and valleys. Parameters: E[pi]E[di] = 0.5 and c = 15.

tially distributed variable h2
i (t). The channel remains constant

for c slots and then changes to an independent value (block
fading). This setup corresponds to case (0, 2, 2) in [3]. We use
λ = 1 m−2 and α = 3.

IV. INTERFERENCE PIKES AND VALLEYS

The co-channel transmissions in slot t cause interference
with power I(t) =

∑
i∈Φ κ `i h

2
i (t) γi(t). This value is corre-

lated over time as messages can exceed the slot length and the
channel is correlated over multiple slots due to block fading.
The interference power can be categorized as high or low
based on a threshold θ between these two states. We employ a
threshold that is normalized to the mean and standard deviation
of I(t). Specifically, we use θ = E[I(t)] + ξ σI(t) [14], where
σI(t) is the standard deviation of I(t) and ξ ∈ N is a scaling
parameter, which determines the level of interference with
which a receiver can cope. Fig. 1 shows a sample trace of
I(t) with three different thresholds.

The pike duration τP is the number of consecutive slots with
I(t) > θ. Reciprocally, the valley duration τV is the number of
consecutive slots with I(t) ≤ θ. The interarrival time between
pikes is given by a full pike-valley period (τP+τV ). We study
a typical node and all nodes in a network.

A. Analysis of a typical node of the network

Nodes are distributed on an area A = 100 m × 100 m. Due
to the stationarity of the PPP, the interference experienced by

a typical node of the network is the same as the one at the
origin (x = 0). The message length di is chosen from an
exponential distribution with parameter η, rounded up to the
next integer and remaining constant for a given node, which
yields a mean message length of E[di] = eη

eη−1 . The results
are averaged over 100 realizations of Φ and 100,000 slots.

Two setups are considered. First, we keep E[I(t)] con-
stant and vary the autocorrelation ρ of interference, which is
achieved by varying E[di] while adjusting E[pi] correspond-
ingly to keep the fraction of active nodes at E[pi]E[di] = 0.5.
Second, we keep ρ constant and vary E[I(t)], which is
implemented by keeping E[di] and E[pi] fixed but varying λ,
which leads to a constant ρ because λ does not influence ρ [4].

Mean pike and valley durations: Fig. 2a shows the mean
values of τP and τV for constant E[I(t)]. With growing E[di],
the fraction of nodes sending in consecutive slots increases
while E[pi] decreases. This results in longer pikes and valleys
with increasing ρ. Fig. 2b shows the results for constant ρ.
Increasing λ makes the pikes slightly shorter and keeps the
valleys almost unchanged. This is because E[I(t)] and σI(t)
increase with λ, but the normalized threshold balances this
effect across the plot. In both setups, the pikes become shorter
and the valleys longer if we increase the threshold.

Distribution of pike and valley durations: After the mean
values, we analyze the empirical probability mass functions
(pmf) of τP and τV . The scaling parameter is set to ξ = 1 in
the following. Fig. 3a shows the pmfs for constant E[I(t)].
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Fig. 3: Empirical probability of pike and valley duration. Parameters: E[pi]E[di] = 0.5, c = 15, and ξ = 1.

Short pikes and short valleys are more likely than long
ones. The constant E[I(t)] leads to a constant fraction of
time in which I(t) exceeds θ. Thus, the very probable short
valleys need to be compensated by improbable long valleys.
The likelihood of short pikes and valleys increases with a
decreasing message length E[di], i.e., with increasing E[pi]
and decreasing ρ. Fig. 3b shows the results for constant ρ.
Again, short pikes and valleys occur with higher probability
than long ones. The probabilities slightly increase at τV = 15
due to the channel block length being c = 15. The distributions
are rather independent of λ due to the normalized θ.

Fig. 4 compares some of these pmfs with a geometric
distribution with the same mean E[τP ] and E[τV ], respectively.
In the considered range, the geometric distribution has a lower
(higher) probability of short (long) durations. A comparison
using constant ρ yields a similar behavior (plots not shown).

Distribution of pike interarrival time: Fig. 5 shows for a
given node placement the events when I(t) crosses θ, either
upwards (from low to high interference) or downwards (vice
versa). This example illustrates that the crossing moments are
not uniformly distributed in time but rather arrive in bursts,
i.e., sometimes there are several short pikes in a row followed
by a long valley (and several short valleys followed by a long
pike). The pmf of the interarrival time of pikes for constant
E[I(t)] compared with a geometric distribution given in Fig. 6

confirms this non-Poisson arrival behavior. Short and very
long interarrival times are more likely than in the geometric
distribution and medium interarrival times are less likely.

B. Analysis of all nodes of a network

Let us finally adopt a network perspective. We employ a
traffic model in which all nodes transmit for a fixed span of
time (thus di = d is constant for all nodes i) and each idle
node starts a new message in a given slot with probability
pi = p, where pd = 0.5. This setting helps us to understand the
spatial dependence of τP and τV , since all nodes experience
the same traffic volume. Fig. 7 shows the fraction of time with
interference above θ, the mean pike durations, and the mean
valley durations. Averaging is conducted over 100,000 slots.
The color of a node indicates its neighbor count, i.e., the
number of nodes in a unit circle around it.

The results are as follows: Both E[τP ] and the fraction of
time with interference above θ increase with the neighbor
count (Fig. 7a and 7b). By contrast, E[τV ] decreases with
increasing neighbor count (Fig. 7c). Nodes with the same
neighbor count (same color) have similar results and therefore
accumulate in the plot.1 For increasing d, the fraction of time

1We exclude nodes with single or few pikes during the simulation time, as
their E[τV ] is much higher and we want to focus on the overall behavior of
the network. These outliers are also excluded from the overall mean.
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Fig. 4: Comparison of distribution of pike and valley durations with the geometric distribution for constant E[I(t)]. Parameters:
E[pi]E[di] = 0.5, c = 15, λ = 1 and ξ = 1.

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400

θ

up
do

w
n

Slot t

I
(t

)
cr

os
se

s
θ

Fig. 5: Events when the interference power crosses the threshold θ (upwards and downwards). Parameters: E[pi] = 0.1,
E[di] = 5, c = 15, λ = 1 and ξ = 1.

above θ remains constant, whereas E[τP ] increases. This can
be explained by the constant pd and the intuition that for
longer messages a closeby interferer will keep interference
above θ for a longer time. By contrast, E[τV ] does not show
this effect, since the idle periods of the interferers are not
quantized by d.

V. CONCLUSIONS AND OUTLOOK

In Poisson networks with Rayleigh block fading and the
given traffic model, the level crossings between low and high
interference occur in bursts. This insight may support the
design of reliability techniques, in a similar way as we exploit
the coherence time of the channel to mitigate burst errors in
the design of interleavers. Further work is necessary to assess
other types of node distribution, channel, and traffic models
and derive analytical expressions.
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(b) Mean pike duration E[τP ].
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(c) Mean valley duration E[τV ].

Fig. 7: Analysis for all nodes of a network. The color of each
node represents its neighbor count. A jitter is added across the
x-axis to visually separate the colored points. Mean values are
shown as solid black square markers. Parameters: pd = 0.5,
c = 15, λ = 1, ξ = 1, and A = 625 m2.
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