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Abstract—This work is devoted to patch-based image denois-
ing. Assuming an additive white Gaussian noise (AWGN) on
patches, we derive corresponding models on centered patches
and on their DC components. Then we propose a strategy
for improving a given path-based denoiser. Finally, we provide
experiments with the recent denoising method HDMI that shows
improvement of the denoising quality, particularly for residual
low frequency noise.

Index Terms—patch-based image denoising, noise modeling,
low frenquency noise reduction, patch centering

I. INTRODUCTION

a) Context: In this paper, we focus on image denoising,
which aims to estimate an image pu from its noisy observation

v “ u` e P Rn, (1)

where e „ N p0, σ2Inq is an additive white Gaussian noise
(AWGN) and u the underlying clean image. A popular way to
deal with this problem, is to represent the image with the set
of all its patches. This patch approach has, for instance, lead
to the well-known denoising methods Non-Local means [1]
and BM3D [2]. In this context, each patch i P t1, . . . , nu is
seen as vector of size p “ sˆ s, and the model (1) yields the
following model on the patch-space

Yi “ xi `Ni, (2)

where Yi P Rp is the observed random vector modeling
the i-th patch, xi P Rp is the underlying clean patch and
Ni „ N p0, σ2Ipq is a Gaussian white noise. Using this,
some of the recent denoising methods are based on a statistical
modeling of the image patches [3], [4], [5], [6], [7]. The idea
behind these methods is to set a prior model on the clean
patch xi seen as a realization of a random vector Xi. The
model therefore rewrites

Yi “ Xi `Ni, (3)

and Bayes’ theorem yields the posterior Xi|Yi. Finally, each
clean patch can be estimated with the conditional expectation

pxi “ ErXi|Yi “ yis. (4)

Convenient priors for computing this estimator (4) are Gaus-
sian priors [3] or Gaussian mixture models (GMM) [4], [6],
[7]. The use of these priors has been widely studied and it
appears that the covariance matrix of these models can encode
local structures up to some contrast change [8]. This permits

to regroup more patches under the same Gaussian model and
then allows for a better estimate of its parameters. There is
however a drawback: grouping patches in this way makes the
mean of the model less informative. This yields an estimate
for each patch that has some bias. This produces the low
frequency residual noise that appears in the result of model-
based patch-based denoising methods. Figure 1 (b) illustrates
this phenomenon in the case of the HDMI method [7], with
strong noise and small patches. A large part of this low
frequency noise seems to come from a poor estimation of
the mean of each patch. Indeed, the image (d) from figure 1
made up of the mean of each patch of the noisy image (a)
has the same patterns than the image (c) which is made up of
the mean of each patch of the denoised image (b). Moreover,
replacing the mean of each denoised patches from (b) with
the true mean of the oracle (f), yields a denoised image (c)
that is way better, both in terms of Peak Signal to Noise Ratio
(PSNR) and visual quality, than the image (b). In addition,
some methods from the literature [6], [5] also seem to suggest
that removing the mean – also called the DC component – of
the patches may improve the denoising quality.

(a) (b) (c)

(d) (e) (f)

Fig. 1. (a) noisy image (standard deviation 30{255). (b) image denoised with
HDMI [7] (patches 7ˆ 7), PSNR = 31.92 dB. (c) image from the denoised
patches of (b) with DC component corrected with oracle value (f), PSNR =
33.78 dB. (d) DC component of the patches of (a). (e) DC component of the
patches of (b). (f) DC component of the oracle image (ground truth).

2019 27th European Signal Processing Conference (EUSIPCO)

978-9-0827-9703-9/19/$31.00 ©2019 IEEE



b) Proposed work: In this work, we propose to study
the decomposition of the patches into the DC component and
the centered component for denoising purposes. To do so, we
define the centered observed random variable Y ci “ Yi´ sYi1p,
where

sYi “
1

p

p
ÿ

j“1

Yipjq, (5)

is the mean of Yi and 1p “ p1, . . . , 1q P Rp. The model (3)
can then be divided into the two following problems

sYi “ sXi ` sNi P R, (6)

and
Y ci “ Xc

i `N
c
i P R

p. (7)

We propose to model the noise components N c
i (section II)

and sNi (section III) of these two problems. Then we propose
in section IV to use this decomposition for enhancing the de-
noising results of existing patch-based denoising methods such
as, for instance, [3], [6], [7]. Finally, we provide numerical
experiments that shows improvement of the denoising quality
in the case of the HDMI method [7].

II. MODELING THE CENTERED NOISE

The centered noise is defined by N c
i “ Ni´ĎNi1p and then

the j-th entry of N c
i is

N c
i pjq “ Nipjq ´

1

p

p
ÿ

k“1

Nipkq, (8)

since Ni is a Gaussian random vector, N c
i is also Gaussian.

Then, we can compute its mean and its covariance matrix
coordinate by coordinate. That gives for the mean

E rN c
i pjqs “ E rNipjqs ´

1

p

p
ÿ

k“1

E rNjpkqs “ 0. (9)

And for the covariance matrix, we have @k, l P t1, . . . , pu

E rN c
i pkqN

c
i plqs “ E rNipkqNiplqs

´
1

p

p
ÿ

m“1

E rNipmq pNiplq `Nipkqqs

`
1

p2

p
ÿ

m“1

p
ÿ

n“1

E rNipmqNipnqs

“ σ2

ˆ

δkl ´
2

p
`

p

p2

˙

“ σ2

ˆ

δkl ´
1

p

˙

.

Finally, we have N c
i „ N p0,ΣNc

i
q with

ΣNc
i
“
σ2

p

¨

˚

˚

˚

˚

˝

p´ 1 ´1 ¨ ¨ ¨ ´1

´1 p´ 1
...

...
. . . ´1

´1 ¨ ¨ ¨ ´1 p´ 1

˛

‹

‹

‹

‹

‚

. (10)

Since ΣNc
i

is a real symmetric matrix, there exists an or-
thonormal basis that diagonalizes it. Given that its eigenvalues
are p (of multiplicity p´1) and 0, we can build an orthogonal
matrix Q such that

ΣNc
i
“ Q

ˆ

σ2Ip´1 0
0 0

˙

QT . (11)

It is worth noticing that the unit eigenvector corresponding
to the eigenvalue 0 is 1?

p p1, . . . , 1q. The change of basis QT

applied to the centered noise then yields

QTN c
i „ N

ˆ

0,
ˆ

σ2Ip´1 0
0 0

˙

˙

, (12)

with the last line traducing that the mean of a centered
vector is zero. Finally, centering the noise implies a dimension
reduction and the total variance of the centered noise defined
as

TVarpN c
i q “ Er}N c

i }
2
2s (13)

“ TrpΣNc
i
q “ pp´ 1qσ2 (14)

“
p´ 1

p
TVarpNiq (15)

is also reduced by a factor pp´ 1q{p.

III. MODELING OF THE DC COMPONENT

Since the initial noise model on a patch Ni is a Gaussian
vector, its mean is a Gaussian random variable and we
have sNi „ N p0, σ

2

p q. Then, reshaping problem (6) as an
image yields the new image denoising problem with additive
Gaussian noise

sY “ sX ` sN, (16)

where sY , sX and sN are the images of Rn whose values at pixel
i are sYi, sXi and sNi. The major difference is that the noise
is now colored. Indeed, if we consider two random variables
sNi and sNj within a same area of sˆ s pixels, they are issued

from two overlapping patches and thus are not independent.
However, we can still perform patch-based image denoising

on this problem: let us consider patches of the same size p “
sˆs from this new image. We define the patches Zi “ πipsY q,
Wi “ πip sXq and Mi “ πip sNq, where πi is the i-th patch
extraction operator. We consider the patch noise model

Zi “Wi `Mi, (17)

with Mi modeling the noise. Since Mi “ p sNi1 , . . .
sNipq, all its

entries are linear combinations of the noise components of the
problem (1) that are i.i.d following N p0, σ2q. Therefore, all
linear combinations of entries of Mi are also Gaussian. This
shows that Mi is a Gaussian vector. We can now compute its
mean and its covariance matrix.

The mean of Mi is obviously 0p the coefficients of the
covariance matrix ΣMi

are given by

pΣMi
qkl “ E

“

sNik ,
sNil

‰

“
σ2

p2
Ckl, (18)
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where Ckl is the number of common pixels between the two
patches of the original image from which sNik and sNil are
derived. This yields after counting

ΣMi “
σ2

p2
B bB (19)

where

B “

¨

˚

˚

˚

˚

˝

s ps´ 1q ¨ ¨ ¨ 1

ps´ 1q s
. . .

...
...

. . . . . . ps´ 1q
1 ¨ ¨ ¨ ps´ 1q s

˛

‹

‹

‹

‹

‚

, (20)

and b is the Kronecker product. In order to use a denoising
method that has been designed for AWGN, we want to perform
a change of basis for the data. To do so, we study the structure
of ΣMi

. First, we show that B is symmetric positive-definite.
Using the Sylvester’s criterion, it is sufficient to show that
all of the leading principal minors of B are positive. These
minors of size d P t1, . . . , su are given by

md “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

s ps´ 1q ¨ ¨ ¨ ps´ d` 1q

ps´ 1q s
. . .

...
...

. . . . . . ps´ 1q
ps´ d` 1q ¨ ¨ ¨ ps´ 1q s

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

, (21)

Adding the first column in the last one yields

md “ p2s´ d` 1q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

s ps´ 1q ¨ ¨ ¨ 1

ps´ 1q s
. . .

...
...

. . . . . . 1
ps´ d` 1q ¨ ¨ ¨ ps´ 1q 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

, (22)

then subtracting the second and the last column to the first
one gives

md “ p2s´ d` 1q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2 ps´ 1q ¨ ¨ ¨ 1

0 s
. . .

...
...

. . . . . . 1
0 ¨ ¨ ¨ ps´ 1q 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

, (23)

Finally, developing the determinant with respect to the first
column and repeating the two last steps yields

md “ p2s´ d` 1q2d´2 ą 0. (24)

This shows that B is a positive-definite matrix. Then BbB is
also symmetric positive-definite as the Kronecker product of
two positive-definite matrices and the Cholesky decomposition
yields an invertible matrix L such that B b B “ LLT .
Therefore, the problem

L´1Zi “ L´1Wi ` L
´1Mi, (25)

is an AWGN problem with noise variance σ2{p2Ip and a de-
noising method such as HDMI can be used to find an estimate
{L´1Wi that gives an estimate of Wi by xWi “ L {L´1Wi.

Fig. 2. Left: noisy DC image (σ “ 50{255). Middle: denoised DC image
PSNR 38.58 dB. Right: ground-truth DC image.

IV. EXPERIMENTS

In this section, we take advantage of the previous modeling
in order to improve the denoising result of model-based patch-
based denoising methods. That is, methods that denoise each
patch with a denoising operator fdenoise. For this testing part,
we propose to use fdenoise “ HDMI [7] which has the
advantage of using only statistical tools. The principle of this
method is rather simple:

1) It uses a GMM with intrinsic lower dimensions to model
clean patches;

2) This model is inferred on the noisy patches with an
expectation–maximization (EM) algorithm;

3) The clean patches are estimated with the conditional
expectation (4), which has a closed-form and is numer-
ically stable (proposition 1 of [7]).

A. Denoising the DC component

In section III, we have proposed to reshape the DC com-
ponent of all patches into an image and to extract patches of
this image in order to perform patch-based denoising on it. We
showed that the noise model on these patches is an AWGN
in a given basis L. We can therefore apply the HDMI method
directly on (25). Figure 2 shows the result of the denoising of
the DC images from the images simpson and lena with a noise
of standard deviation σ “ 30{255. Note that the results are
quite good since the problem (25) is an easier problem than
the original one (3). Indeed, the dynamic of the DC image
is quite the same as the one of the original image whereas
the dynamic of the noise is reduced by a factor p. Therefore,
the signal-to-noise ratio of the problem (17) is about p times
larger than the one of the original problem (3).

Finally, with this step, we obtain for each patch i P
t1, . . . , nu of size s ˆ s from an image u P Rn, an accurate
estimate x

ĎXi of its DC component as follow :

‚ construct an image U such that each pixel i is the mean
sYi of the patch i;

‚ extract the patches Zi from U of size sˆ s;
‚ denoise each patch in the new basis L´1Zi with the

denoising operator fdenoise
‚ estimate xWi “ Lfdenoise

`

L´1Zi
˘

then reconstruct the
denoised image pU ;

‚ an estimate of the DC component of each patch of the
original image is then given by x

ĎXi “ pUi.
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Fig. 3. Images used for the experiments. Grey-scale: Simpson, Lena and
Barbara. Color: Traffic, Dice and Flower.

B. Denoising the patches

In order to perform the final patch denoising, we explored
two strategies :
(S1) denoise the centered patches from (7) then add the DC

estimate from section IV-A;
(S2) denoise the original patches from (3), remove afterwards

their DC component, then add the DC estimate from
section IV-A.

The results of these two strategies are shown in table I
for the three grey-scale images simpson, lena and barbara
with different level of noise. The second strategy (S2) always
performs better than the first one (S1). Although the first
strategy performs well in the constant areas, it fails in the
complex parts and makes texture more blurry. This can be
explained, since the signal-to-noise ratio of the problem on
centered patches (7) is lower than on original patches (3) (the
centering of the patches has reduced their dynamics). In this
section, we then propose to study the denoising improvement
of the strategy (S2) that correct the DC component of the
patches afterwards.

TABLE I
RESULTS IN PSNR (dB) OF TWO STRATEGIES (S1) AND (S2) USED ON THE

HDMI METHOD WITH PATCHES OF SIZE 10ˆ 10 FOR DIFFERENT NOISE
LEVELS. IMAGES simpson, lena AND barbara FROM FIGURE 3.

Image σ HDMI [7] (S2) diff. (S1) diff.

Simpson
10 38.89 38.93 +0.04 38.93 +0.04
20 34.88 34.97 +0.09 34.96 +0.08
30 32.46 32.58 +0.12 32.58 +0.12

Lena
10 35.81 35.82 +0.01 35.81 +0.00
20 32.86 32.91 +0.05 32.89 +0.03
30 31.09 31.19 +0.10 31.14 +0.05

Barbara
10 34.81 34.82 +0.01 34.79 -0.02
20 31.42 31.45 +0.03 31.42 +0.00
30 29.38 29.42 +0.04 29.36 -0.02

1) Correction of the DC component afterwards: Hereafter,
we propose a method for improving the denoising result of any
denoising method that uses an operator fdenoise that remove
AWGN. The main steps are as follows:

1) compute an estimate pXi “ fdenoisepYiq of each patch
of the image;

Fig. 4. From left to right. Noisy images (standard deviation 50{255). HDMI
resulting groups. Images denoised by HDMI with patches 7ˆ7 (top 26.97dB,
middle 34.61dB, bottom 31.76dB). Images denoised with DC correction
method (top 27.07dB, middle 36.06dB, bottom 32.16dB).

2) compute an estimate x

ĎXi of the DC component of each
patch as show in section IV-A;

3) correct each patch with the new estimate of its DC
component:

Est pXiq “ xXi ´
Ď

xXi1p `
x

ĎXi1p. (26)

This strategy improves the quality of denoising compared to
the original method. The figure 4 illustrates this improvement
with fdenoise “ HDMI for two images. The low frequency
noise is reduced visually and the results are also better in terms
of PSNR, `0.10dB for the upper image, that has fine textures,
and `1.45dB for the middle image, which is smoother, and
`0.40db for the bottom image, which has texture and constant
parts.

C. Discussion

Table II shows the results obtained for different patch
sizes, different noise levels the three images presented in
figure 3. Our approach systematically improves the quality of
denoising, with a much more significant improvement for the
least textured images. This improvement allows the HDMI
method to be close to the performance of the state-of-the-
art FFDnet [9] method which uses deep learning. Even the
HDMI method was already above the BM3D method [2],
the proposed approach allows HDMI to really outperforms
this method that used to be the state-of-the-art for path-
based image denoising. Another trend that appears is that the
improvement is significantly better in the case of high variance
than in the case of low variance. The residual low-frequency
noise being proportional to the variance, this trend shows that
this residual noise is actually reduced. Finally, we can see that
the smaller are the patches, the greater is the improvement.
This behavior can be explained by the fact that the variance
of the noise of the DC component is σ2{p where p is the
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TABLE II
RESULTS IN PSNR (dB) FOR THE THREE IMAGES FROM FIGURE 3 AND VARIOUS NOISE STANDARD-DEVIATION σ. HDMIs INDICATES THAT WE USED
PATCHES OF SIZE sˆ s, basic CORRESPONDS TO HDMI [7], improved IS OUR PROPOSED IMPROVEMENT, diff. IS THE DIFFERENCE. RESULTS OF THE

STATE-OF-THE ART ALGORITHMS BM3D [2] AND FFDNET [9]ARE SHOWN FOR SAKE OF COMPARISON.

Images σ
HDMI5 HDMI7 HDMI10 BM3D [2] FFDnet [9]basic improved diff. basic improved diff. basic improved diff.

Traffic

20 31.42 31.53 +0.11 31.48 31.53 +0.05 31.29 31.31 +0.02 30.81 31.74
30 29.24 29.40 +0.16 29.39 29.46 +0.07 29.25 29.28 +0.03 28.83 29.79
40 27.74 27.95 +0.21 27.99 28.09 +0.10 27.94 27.98 +0.04 27.45 28.48
50 26.60 26.86 +0.26 26.97 27.07 +0.10 26.97 27.02 +0.05 26.43 27.52

Dice

20 38.51 40.00 +1.49 39.76 40.74 +0.98 40.49 41.01 +0.52 39.98 41.06
30 36.08 37.79 +1.71 37.48 38.76 +1.28 38.55 39.30 +0.75 38.01 39.36
40 34.33 36.14 +1.81 35.90 37.21 +1.31 37.01 37.95 +0.94 36.52 38.01
50 32.98 34.88 +1.90 34.61 36.06 +1.45 35.89 36.85 +0.96 35.19 36.72

Flower

20 36.25 36.71 +0.46 36.76 36.95 +0.19 36.81 36.85 +0.04 35.89 37.19
30 33.91 34.53 +0.62 34.58 34.86 +0.28 34.73 34.81 +0.08 33.74 35.18
40 32.22 32.94 +0.72 33.00 33.36 +0.36 33.26 33.37 +0.11 32.13 33.73
50 30.90 31.74 +0.84 31.76 32.16 +0.40 32.11 32.27 +0.16 30.94 32.51

Mean

20 35.39 36.08 +0.69 36.00 36.41 +0.41 36.20 36.39 +0.19 35.56 36.66
30 33.08 33.91 +0.83 33.82 34.36 +0.54 34.18 34.46 +0.29 33.53 34.78
40 31.43 32.34 +0.91 32.30 32.89 +0.59 32.74 33.10 +0.36 32.03 33.41
50 30.16 31.16 +1.00 31.11 31.76 +0.65 31.66 32.05 +0.39 30.85 32.25

number of pixels of the patch. Thus, for large patches, the
noise for the DC component is already low and correcting it
does not improve the final result that much.

V. CONCLUSION

In this work, we have studied the effect of patch centering
for model-based patch-based denoising methods. For this
purpose, we have proposed a modeling of the centered noisy
patches and a modeling of the DC component of the noise.
These modeling have led us to a strategy for improving the
quality of denoising when we have a denoiser fdenoise for
the patches. The proposed strategy shows improvement, both
visually and in term of PSNR, when used with the HDMI
method, especially for the reduction of the low-frequency
residual noise.

In future work, we would like to study the links between
this approach and multiscale frameworks.
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