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Abstract—Different endocrine roles of cardiac adipose tissues
motivate the analysis of their volumes and compositions on large
cohort image data sets. This, however, demands reliable robust
methods for automated segmentations as manual segmentations
are tedious costly and unreproducible. Besides the effects of noise
and partial volumes, segmentation of these adipose tissues on clin-
ical medical images is challenged by their similar intensities and
features and undetectability of their boundaries. In this paper,
we present a feature- and prior-based random walker graph that
additionally incorporates a diffusion-based susceptible infected
recovered model to guide the segmentation by the curvatures of
the surface of the segmented cardiac structures. This method is
trained and evaluated for segmenting epicardial, pericardial, and
perivascular adipose tissues on volumetric fat-water magnetic
resonance images. The obtained results demonstrate its utility
for large cohort investigation of these adipose compartments and
also any other segmentation task on multichannel images.

Index Terms—Random Walker Algorithm, Feature and Prior
Learning, Diffusion-based Susceptible Infected Recovered Model,
Surface Curvature, Cardiac Adipose Tissues

I. INTRODUCTION

Epicardial adipose tissue (EpAT) by having a high release
and uptake of free fatty acids, serves as an energy source
and plays an anti-inflammatory and a thermo-regulatory role
for the heart. It also supports coronary arteries mechanically
and has an anti-toxic effect. However, its excess can lead
to cardiovascular dysfunction and inflammation. In contrast,
pericardial adipose tissue (PeAT) is a visceral fat depot and
promotes metabolic syndrome and cardiac fibrosis. Cardiac
perivascular (PvAT) adipose tissues can also promote coronary
artery and abdominal aortic artery calcification [1].

Despite of these findings, the underlying mechanisms and
relationships between morphology and composition of these
fat compartments and different disorders are not fully under-
stood [1]. To achieve this understanding, images of a large
cohort of diverse age, gender, and clinical profile should be
processed by reliable robust segmentation methods as manual
segmentations are tedious, costly, and subject to human errors.

Magnetic resonance (MR) imaging provides a noninvasive
tool to acquire images for these analyzes. However, its slow
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acquisition process exacerbates artifacts introduced by cardiac
and respiratory motions. Also, the limited spatial resolution of
clinical MR imaging, noise, and partial volume effects hinder
detection of boundaries between those compartments and thus
challenges edge-based segmentation methods [2]. Moreover,
similar intensities of these adipose tissues imply powerful
feature- and prior-based classifier for their segmentation.

Due to these challenges and to the best of our knowledge,
no previous method has been designed so far to automatically
segment cardiac adipose tissues on clinical MR images. In this
paper, we present a method for automatic 3D segmentation of
PeAT, EpAT, and PvAT on volumetric fat-water MR images,
simply referred to as fat-water images hereinafter. A fat-water
image involved a volumetric fat and its corresponding volu-
metric water image. This method used a random walker graph
consisting of a spatial (feature-based) and an aspatial (prior-
based) sub-graph that additionally incorporated a diffusion-
based susceptible infected recovered (SIR) model to guide the
segmentation by the curvatures of the nearby surfaces.

II. MATERIALS AND METHODS

A. MR Image Acquisition and Reference Labeling

On a clinical 3 T scanner, thoraxes of 42 asymptomatic
obese volunteers (25 men and 17 women) were scanned in
axial orientation with an isotropic spatial resolution of 1.8 mm
using a 3D spoiled gradient echo sequence. This provided the
volumetric magnitude and phase images of 4 bipolar echoes.
To avoid motion artifacts, electrocardiography triggering and
breath-holding were applied. Then misalignments between
even and odd echoes were corrected [3] and a fat-water
decomposition [4] was conducted on them to compute the
fat-water images. Fig. 1 shows an axial slice of the acquired
images and their fat-water decomposition.

On every fat image, reference masks of PeAT, EpAT, and
PvAT were manually segmented using the slice-wise tools of
Live Wire and Region Growing of Medical Imaging Inter-
action Toolkit (MITK) [5]. These masks defined voxel-wise
reference labels of all the fat-water images. Out of the 42 fat-
water images and their voxel-wise reference labels, training
and test data sets were made. The training set contained 23
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Fig. 1. An axial slice of the acquired magnitude and phase images of 4
bipolar echoes and their decomposed fat and water images with and without
correction of misalignments between the odd and even echoes.

fat-water images and their voxel-wise reference labels. The
test set contained the remaining 19 fat-water images and their
voxel-wise reference labels. The training set was used to learn
features and priors. The test set was used to evaluate the
proposed graph-based segmentation.

B. Training and Test Samples

Every fat-water image was sampled by non-overlapping
cubic patches of 27 voxels. From every fat-water patch,
98 features, including 92 intra-channel features and 6 inter-
channel features, were extracted. The 92 intra-channel features
included 46 fat and 46 water features. The 46 fat/water features
included 14× 3 = 42 isotropic (angle-invariant) features of
angular mean, range, and standard deviation of 14 Haralick
features of a 3D gray-level co-occurrence matrix of 1 voxel
displacement in 13 directions [6], average gradient magnitude,
average gradient orientation quantized by a regular icosahe-
dron, median of intensities, and the mode of the histogram of
gradient (HOG) [7] of intensities. The 6 inter-channel features
included fat fraction ratio, fat-water ratio, absolute difference
in median of intensities, absolute difference in average gra-
dient magnitudes, l1 norm of differences in average gradient
orientation, and l1 norm of differences in isotropic Haralick
features of a fat and its corresponding water patch. This way,
every training sample involved a fat-water patch, its patch-wise
reference label (mode of its voxel-wise reference labels), and
an 98-dimensional feature vector. Every test sample involved
a test fat-water patch and its 98-dimensional feature vector.

C. Feature- and Prior-based Random Walker Graph

According to [8], during the training, the training samples
were used to optimize a random forest classifier, over which,
the most discriminative features for classifying the test samples
were determined. This classifier involved 15 binary decision
trees of depth of 4, and, at every decision node, relied on√

98≈ 10 randomly sampled features of the received training

Fig. 2. An axial slice of a test fat image (a), and maps of the priors for EpAT
(b), PeAT (c), and PvAT (d) from the random forest classifier.

samples. This way, 40 most discriminative features were
selected from the 98 features.

During the test, the test samples of every test fat-water
image were processed by the trained random forest classifier.
This assigned prior probabilities p(E pAT )

i , p(PeAT )
i , p(PvAT )

i , and
p(BG)

i , corresponding to EpAT, PeAT, PvAT, and background
(BG), to every test sample si. Then, for the sample si,
p(CaAT s)

i = p(E pAT )
i + p(PeAT )

i + p(PvAT )
i was computed and if

p(CaAT s)
i > 0.5 this sample was labeled as cardiac adipose

tissues (CaATs). The prior probabilities and the segmented
CaATs were used in the next steps (see subsection II-E). Fig.
2 shows an axial slice of a test fat image and maps of these
priors for the three CaATs.

Then, from the test fat-water image inside the bounding
box of the segmented CaATs, a random walker graph G =
{Gs,Gp}, involving a spatial (feature-based) Gs = (Vs,Es) and
an aspatial (prior-based) Gp = (Vs ∪Vp,Ep) sub-graph, with
vertices Vs and Vp and edges Es and Ep, was derived.

In the spatial sub-graph Gs, every vertex vsi ∈ Vs cor-
responded to a test sample si and the edges were Es =
{esi, j |si is adjacent to s j} with adjacent meaning the patches
of the test samples being 26-connected neighbors of each
other. Weight of an edge esi, j ∈ Es was denoted by wsi, j .

In the prior-based sub-graph Gp, every vertex vpi ∈ Vp
corresponded to a class and was connected to every vs j ∈Vs via
an edge epi, j ∈ Ep. That is, |Vp|=C with C being the number
of classes. Weight of an edge epi, j ∈ Ep was denoted by wpi, j .
Fig. 3 shows a portion of these sub-graphs.

Based on [9], edge weights of the prior-based sub-graph Gp
were derived from the prior probabilities of the test samples
whereas edge weights of the spatial sub-graph Gs were derived
from differences in the most discriminative features of adjacent
samples. In [9], this graph showed promising results for
segmenting tissues of significant feature differences or clear
boundaries [9]. However, we observed its limited performance
in segmenting cardiac adipose tissues of similar features
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Fig. 3. The 26-connected neighborhood of a voxel and the spatial (feature-
based) Gs and aspatial (prior-based) Gp sub-graphs of the image graph.

and undetectable boundaries. To tackle these bottlenecks, we
additionally included a diffusion-based SIR model [10] in
the spatial sub-graph Gs of the above graph to guide the
segmentation by the curvatures of the surfaces of the nearby
cardiac structures.

D. The SIR Model

In a random walker graph based on the SIR model [10], the
probability of a sample si for having the cth class label 1 ≤
c≤C) was represented by an infection 0≤ I(c)i,t ≤ 1 incurred to
it at time t by its spatially adjacent samples. Similar to [10],
we used the steady state solution of this infection diffusion
model to determine patch-wise labels (segmentations), i.e. t→
∞ or t = t∞. This implied no recovery state and a constant
(time-independent) susceptibility 0≤ S(c)i,t = S(c)i ≤ 1 to the cth

infection (class label) for every sample si.
However, in contrast to [10], we did not assume an identical

susceptibility for all the samples. Instead, we utilized the
susceptibility factor of the original SIR model in order to
incorporate additional information into the segmentation. To
this end, the SIR model with sample-dependent susceptibilities
was included in the spatial sub-graph of every test fat-water
image. To this end, expanding on a normalized local mean field
of the SIR model [10], [11], the evolution of the cth infection
of a sample si, i.e. ∆I(c)i,t = I(c)i,(t+∆t)− I(c)i,t , was determined by

its susceptibility S(c)i and the current infections of its 26-
connected (adjacent) samples:

∆I(c)i,t

∆t
= ∑

j∈Ni

wsi, j√
di
· (

S(c)j√
d j

I(c)j,t −
S(c)i√

di
I(c)i,t ), (1)

where 0 ≤ wsi, j ≤ 1 was the weight of the edge connecting
vsi ∈ Vs and vs j ∈ Vs; Ni = { j|s j is adjacent to si} and di =

∑ j∈Ni wsi, j was the degree of the vertex vsi ∈ Vs.
By assuming ∆t = 1 and considering ∆I(c)i,t∞ = 0, the steady

state infection I(c)i,t∞ should fulfill

I(c)i,t∞ = ∑
j∈Ni

wsi, j√
d j ·
√

di
·

S(c)j

S(c)i

· I(c)j,t∞ , 0≤ I(c)i,t∞ ≤ 1. (2)

Thus the infection of every test sample was a weighted sum
of the infections of its adjacent samples. These steady state
solutions were obtained by solving a system of C linear
equations of a normalized prior-based random walker graph
[10], [12]. It is noteworthy that ∑c I(c)i,t∞ 6= 1. That is, all the C

Fig. 4. HOG of intensities of the fat patches of 53 (a) and 73 (b)
voxels on an axial slice of a fat image. Color-coded surface curvatures (c),
directions of maximum curvatures over the color-coded Gaussian curvatures
(d), and surface normals over the color-coded Gaussian curvatures (e) of the
cardiac structures segmented on the corresponding water image. The surface
curvatures were clipped to [-2,+2] for a better visualization.

equations should be solved. After solving these equations, the
class label of si was determined as l̂i = arg max

c
I(c)i,t∞ .

E. The Sample-dependent Susceptibilities

The introduction of the susceptibilities in (2) was motivated
by observing that the mode of the HOG of the fat patches
belonging to the EpAT were almost aligned with the direction
of maximum curvature of the myocardium. Also, the mode of
the HOG of the fat patches belonging to the PvAT were almost
aligned with the direction of maximum curvature of either of
the cardiac vessels. In contrast, modes of the HOG of the fat
patches belonging to the PeAT had diverse orientations. Fig.
4 shows these for a segmented cardiac structure and an axial
slice of the corresponding fat image. These alignments could
be attributed to the synchronous movement of the EpAT with
the myocardium during the cardiac motion and the gradual
development of the PvAT around vessels.

To utilize these observations, inside the box, bounding the
segmented CaATs, an Otsu threshold was applied to the water
image to segment cardiac structures including myocardium
and cardiac vessels. Surfaces of these segmented volumes
were computed, smoothed, and voxelized and their voxel-wise
curvatures, normals, and direction of maximum curvatures
were computed. Also, the test samples were reduced to the

Fig. 5. Histogram of patch-wise average curvatures of a test fat-water image
and the FWHM of its main peaks.
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Fig. 6. Axial slices of a test fat image with the reference masks (green), automatically segmented masks (red), and their overlaps (yellow) for PvAT (a),
EpAT (b), and PeAT (c).

ones located in the box of the segmented CaATs.
A fat-water patch of a test sample was deemed to be a

surface patch if it contained at least one surface voxel. Among
all surface voxels of such a patch, average of curvatures,
outward normals, and direction of maximum curvatures were
calculated. Then, histogram of the patch-wise average curva-
tures was computed. The lower peak of this histogram was
associated to the myocardium and the upper peak to the cardiac
vessels. Fig 5 shows this histogram for a test fat-water image.
Curvatures inside the full width at half maximum (FWHM)
of every peak were considered as the typical curvatures of
the corresponding cardiac structure. Then, from every surface
patch, whose curvature was typical for the myocardium, a
search was started by following its normal. In each trial of
this search, indexed by u = 1, ...,N, a fat-water patch was hit
and the susceptibility of its test sample si was defined as

S(c)i = S′i
(c)/(

4

∑
k=1

S′i
(k)), (3a)

S′i
(c) =


exp(p(CaAT s)

i +d1) if c = EpAT

exp(p(CaAT s)
i ) if c = PvAT or PeAT

exp(1− p(CaAT s)
i ) if c = BG

, (3b)

d1 = k · |cos(6 modHOG f − 6 dmyo)|/u, (3c)

where k = 4 was an empirically set factor depending on the
size of the image patches; dmyo was the direction of the
maximum curvature of the search-starting surface patch of the
myocardium and modHOG f was the mode of the HOG of the
fat patch of si. This way, a sample hit by a lower search trial
(u) was more susceptible than a sample hit by a higher trial.
Similar search was started from every surface patch, whose
curvature was typical for the cardiac vessels. The search trials

were indexed by p = 1, ...,N, and the susceptibility of every
hit sample si was defined as (3) with the difference of

S′i
(c) =


exp(p(CaAT s)

i ) if c = EpAT or PeAT

exp(p(CaAT s)
i +d2) if c = PvAT

exp(1− p(CaAT s)
i ) if c = BG

, (4a)

d2 = k · |cos(6 modHOG f − 6 dves)|/p, (4b)

and dves denoting the direction of the maximum curvature of
the search-starting surface patch of the cardiac vessel.

In each trial of the above searches, the susceptibilities as-
signed to a sample were also assigned to its adjacent samples.
This way, every sample could be hit multiple times, either by
different search trials or by different neighbors, or not hit at
all. If it was hit multiple times, its final susceptibility for every
class label was the average of its assigned susceptibilities for
that class. If it was not hit at all, its susceptibility was defined
as (3) with the difference of

S′i
(c) =

{
exp(p(CaAT s)

i ) if c = EpAT or PvAT or PeAT

exp(1− p(CaAT s)
i ) if c = BG

,

(5)

F. Evaluation

Masks of the automatically segmented adipose tissues on 19
test fat-water images were evaluated against their reference
masks by using the quantitative metrics of dice coefficient
(Dice), mean symmetric surface distance (MSSD), and Haus-
dorff distance (HSD) [9].

III. RESULTS

Fig. 6 shows the automatically segmented masks and the
reference masks of cardiac adipose tissues on 5 axial slices
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of a test fat image. On 19 test fat-water images, the pro-
posed method achieved dice coefficient (Dice) = 87.4±2.6,
mean symmetric surface distance (MSSD) = 1.3±0.25, and
Hausdorff distance (HSD) = 4.31±1.34 in the automatically
segmented EpAT. Dice = 88.2±1.9, MSSD = 1.1±0.19, and
HSD = 4.12±1.28 in the automatically segmented PeAT. Dice
= 81.3±2.2, MSSD = 1.61±0.68, and HSD = 5.67±1.52 in
the automatically segmented PvAT.

The present method was implemented in C++ and Matlab.
On a PC equipped with a quad-core CPU of 3.10 GHz
frequency and 16 GB RAM, feature-learning from 23 training
fat-water images took 3.5 hours and segmentation of a test
fat-water image took 24±7 minutes time.

IV. DISCUSSION

As shown in Fig. 2, an exclusive use of a discriminative
feature-learning classifier could not lead to an accurate local-
ization and segmentation of cardiac adipose tissues on fat-
water MR images. Clinical cardiac imaging demands breath-
holding and electrocardiography triggering to mitigate cardiac
and respiratory motions. These imply a fast acquisition and
thus a limited spatial resolution that challenges detection of
their separating septa, e.g. the visceral pericardium. Addition-
ally, cardiac adipose tissues manifest subtle feature differences
which are not enough for their reliable segmentation.

In this paper, we tackled above challenges and proposed a
fully automated method for segmenting cardiac adipose tissues
on volumetric fat-water MR images. This method expanded
on [8]–[10] by incorporating a diffusion-based SIR model
into a feature- and prior-based random walker graph in order
to additionally guide the segmentation by the curvatures of
the segmented cardiac surfaces. This method involved some
hyperparameters that were set empirically with respect to the
spatial resolution of the recorded images and typical sizes of
the cardiac structures.

Contrary to [10], our method relied on a regular image
grid and did not consider degree (centrality) of the samples
to estimate their labels. This was due to the highly variable
distribution of the cardiac adipose tissues in different subjects.
Also, we did not assume an identical susceptibility for all the
samples. Instead, we utilized the susceptibility factor of the
original SIR model in order to incorporate additional infor-
mation into the segmentation. Moreover, to avoid misleading
effects of undesired feature variations induced by intensity
nonuniformities or artifacts, we did not use any clustering
method to form our image patches. Finally, by incorporating
priors, estimated by a classifier, we provided the random
walker seeds automatically and thus mitigated the sensitivity
of the random walker algorithm to the number and distribution
of these seeds and their errors.

Despite of evaluations on segmenting cardiac adipose tis-
sues, the present method is generic and extendable to other
segmentation tasks on any multichannel image. Its compu-
tational burden in localizing fat depots can be reduced by
incorporating it in a hierarchical segmentation framework [13].
Also, its priors can be estimated by any other classifier such

as deep learning methods [14]. However, this method was still
challenged by segmenting small fat compartments. Accord-
ingly, it was only trained and evaluated on images of obese
subjects. Future extensions of this work could be tackling noise
and partial volume effects for a reliable segmentation of small
compartments [15] and incorporation of pathological images
into the feature- and prior-learning and the SIR model in order
to exclude pathologies from fat depots.

The present method is one of the first approaches that tack-
les fully automated segmentation of cardiac adipose tissues
on volumetric fat-water images. Thus, a comparison with the
state-of-the-art on the same segmentation task is not possible.
Future work would be an application of this method to large
cohort data sets and an automated analysis of morphological
and pathogenic properties of cardiac adipose tissues in relation
to different (sub)clinical disorders.
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M. Hastenteufel, T. Kunert, and H. P. Meinzer, “The medical imaging
interaction toolkit,” Med Image Anal, vol. 9, no. 6, pp. 594–604, 2005.

[6] F. Han, H. Wang, G. Zhang, H. Han, B. Song, L. Li, W. Moore, H. Lu,
H. Zhao, and Z. Liang, “Texture feature analysis for computer-aided
diagnosis on pulmonary nodules,” J Digit Imaging, vol. 28, no. 1, pp.
99–115, 2015.

[7] W. T. Freeman and M. Roth, “Orientation histograms for hand gesture
recognition,” MERL - Mitsubishi Electric Research Laboratories, Cam-
bridge, MA 02139, Tech. Rep. TR94–03, 1994.

[8] F. Fallah, B. Yang, S. S. Walter, and F. Bamberg, “A hierarchical
ensemble classifier for multilabel segmentation of fat-water MR images,”
in Proc Eur Signal Process Conf, Sep. 2018.

[9] ——, “Hierarchical feature-learning graph-based segmentation of fat-
water MR images,” in Proc IEEE Conf Signal Process Algorithms Archit
Arrange Appl, 2018, pp. 37–42.

[10] C. G. Bampis, P. Maragos, and A. C. Bovik, “Graph-driven diffusion
and random walk schemes for image segmentation,” vol. 26, no. 1, pp.
35–50, 2017.

[11] E. B. Postnikov and I. M. Sokolov, “Continuum description of a contact
infection spread in a SIR model,” Math Biosci, vol. 208, no. 1, pp.
205–215, 2007.

[12] L. Grady, “Multilabel random walker image segmentation using prior
models,” in Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit,
2005, pp. 763–770.

[13] F. Fallah, S. S. Walter, F. Bamberg, and B. Yang, “Simultaneous
volumetric segmentation of vertebral bodies and intervertebral discs on
fat-water MR images,” IEEE J Biomed Health Inform, pp. 1–10, 2018.

[14] F. Fallah, D. M. Tsanev, B. Yang, S. Walter, and F. Bamberg, “A
novel objective function based on a generalized Kelly criterion for deep
learning,” in Proc IEEE Conf Signal Process Algorithms Archit Arrange
Appl, Sept 2017, pp. 84–89.

[15] F. Fallah, J. Machann, P. Martirosian, F. Bamberg, F. Schick, and
B. Yang, “Comparison of T1-weighted 2D TSE, 3D SPGR, and two-
point 3D Dixon MRI for automated segmentation of visceral adipose
tissue at 3 Tesla,” Magn Reson Mater Phy, vol. 30, no. 2, pp. 139–151,
2017.

2019 27th European Signal Processing Conference (EUSIPCO)


