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Abstract—Learning redundant dictionaries for sparse repre-
sentation from sets of patches has proven its efficiency in solv-
ing inverse problems. However, the optimization process often
calls for the prior knowledge of the noise level or the regular-
ization parameters for sparse encoding. In a Bayesian frame-
work, these parameters are integrated within the probabilistic
model through the choice of prior distributions. Although
efficient, these methods come with numerical disadvantages for
large-scale data. Small-variance asymptotic (SVA) approaches
pave the way to much cheaper though approximate methods
for inference by taking advantage from a fruitful interaction
between Bayesian models and optimization algorithms. We
propose such a SVA analysis of a Bayesian dictionary learning
(DL) model where the noise level and regularization level are
jointly estimated so that nearly no parameter tuning is needed.
We analyze this algorithm and demonstrate its efficiency on
real data to illustrate the relevance of the resulting dictionaries.

Index Terms—Bayesian model, small variance asymptotic,
sparse representations, dictionary learning, inverse problems.

1. Introduction

Inverse problems in signal or image processing (e.g.
denoising or inpainting) are most often ill-posed so that prior
information, namely regularization, becomes necessary to
reduce the set of potential solutions. Sparse promoting reg-
ularizers have sparked a surge of interest since the notable
discovery that many natural signals are approximated well
by linear combinations of a few elements from some over-
complete family, called a dictionary.

More formally, let X ∈ RL×N be the patches from the
initial clean image. Each column vector xn ∈ RL represents
a square patch (e.g. 8 × 8 so L = 64) in lexicographic
order. In presence of additive noise ε, the acquisition process
is often modeled as Y = X + ε where Y ∈ RL×N is
the observation matrix. The goal is to reconstruct X as a
linear combination of a few elements of the dictionary D =
[d1, . . . ,dK ] ∈ RL×K following X = DW and such that
each column vector wn of the encoding coefficients matrix
W ∈ RK×N satisfies ‖wn‖0 � L.
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Although the dictionary can originate from mathematical
functions (DCT, wavelets...), dictionaries directly learned
from the data often outperform the non-adaptive ones [1].
The latter task is referred to as dictionary learning (DL).
Alternate procedures have been proposed, solving itera-
tively sparse approximations problems followed by Least
Squares updates of the atoms [2] or rank-1 approximations
of the residual error [3]. Although numerically efficient,
both methods require to invert high dimensional matrices.
Several works have been proposed to tackle this problem,
updating the atoms using either gradient descent [4] or on-
line approaches [5, 6]. Assuming i.i.d. Gaussian Noise (i.e.,
quadratic discrepancy), most methods reduce to minimizing
a functional of the form

(D̂,Ŵ) = argmin
(D,W)

1
2‖Y −DW‖22 + λ‖W‖p (1)

where sparsity is imposed through the `0 pseudo-norm or its
convex relaxation. In (1), the regularization parameter λ has
to be adjusted with the (unknown) noise level and strongly
impacts performances. Among the few proposed strategies
to choose λ, we mention cross-validation [7], Homotopy
based algorithms [8] or probabilistic models.

In a Bayesian framework, Problem (1) is translated
in a Gaussian likelihood plus a penalty term originating
from a prior distribution p(D,W, λ). Designing efficient
yet scalable algorithms for Bayesian inference has become
a tremendous topic. Two noteworthy lines of research have
arisen, namely fast sampling of MCMC chains with strong
space exploration potential and deterministic algorithms to
approximate Bayesian estimators.

Small-Variance asymptotics (SVA) analyses were re-
cently introduced as a computationally efficient framework
to approximate the MAP estimators of a Bayesian model.
Initially designed to perform inference with Bayesian non
parametric priors [9, 10], its scope now goes beyond ma-
chine learning tasks [11]. Coupling hyper-parameters with
the noise level, the rationale of SVA is to take the lim-
iting behavior of the MAP estimator as the noise tends
to zero. However, such a coupling introduces controlled
parameters, losing the advantages of Bayesian model. In
this paper, we propose a SVA approach for DL where the
controlled parameters are integrated within the Bayesian
model, leading to a fully parameter-free Bayesian analysis.
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Up to our knowledge, this is the first parameter-free SVA
analysis proposed in the literature. The relevance of the
learned dictionaries is illustrated on denoising applications.

Section 2 describes the proposed Bayesian model. The
SVA analysis as well as the proposed algorithm is described
in Section 3. Section 4 illustrates the relevance of the
approach on numerical experiments on a denoising problem.
Section 5 gathers conclusions and prospects.

2. Beta-Bernoulli-Gaussian model

This section introduces the Bernoulli Gaussian model
used for DL. We describe the conditional posterior distribu-
tions that will be used in a Gibbs sampler for inference. In
Sec. 3.1, these posteriors are exploited in the SVA analysis.
Note that this model corresponds to the parametric approx-
imation of the Indian Buffet Process used in [12].

yi = Dwi + εi ∀1 ≤ i ≤ N
dk ∼ N (0, L−1IL) ∀1 ≤ k ≤ K
wi = zi � si

zi ∼
K∏
k=1

Ber(πk) with π ∼
K∏
k=1

Beta(a0, b0)

si ∼ N (0, σ2
sIK) with σ2

s ∼ IG(c0, d0)
εi ∼ N (0, σ2

εIL) with σ2
ε ∼ IG(e0, f0)

Except for σ2
D that is fixed to 1/L to avoid a multiplicative

factor indeterminacy, vague conjugate priors are used for
θ=(σ2

S , σ
2
ε), i.e., inverse Gamma with small hyperparame-

ters (c0, d0, e0, f0 = 10−6). We set a0 = b0 = 1 which is
equivalent to choosing a uniform distribution on [0, 1] since
we have no prior information on the use of each atom.

Using the Bayes rule, the joint posterior distribution of
the unknown parameters D,W = Z� S,π,θ writes

p
(
D,Z,S,π,θ|Y

)
∝ p(Y | D,W, σε)p(D,W,π,θ)

∝
( 1

2πσ2
ε

)NL
2

exp
(
− 1

2σ2
ε

tr[(Y −DW)T(Y −DW)]
)

×
(
L
2π

)LK
2

exp
(
−L2 tr[DTD]

)
×
(

1
2πσ2

S

)NK
2

exp
(
− 1

2σ2
S

tr[STS]
)

×
K∏
k=1

π

N∑
i=1

Z(k,i)

k (1− πk)
N−

N∑
i=1

Z(k,i)
×

K∏
k=1

11[0,1](πk)p(θ) (2)

where Z(k, i) denotes the (k, i) entry of Z. Bayesian esti-
mators can be approximated by resorting to a Gibbs sampler.
It consists in drawing from (2) by sampling alternately
D,Z,S,π, θ according to
Posterior distribution of each atom dk

dk|Y,Z,S,D−k,θ ∼ N (µdk
,Σdk

) (3)
Σdk

= (LIL + σ−2ε IL
N∑
i=1

w2
ki)
−1

µdk
= σ−2ε Σdk

N∑
i=1

wki(yi −
K∑
j 6=k

djwji).

Note that when an atom dk is unused, its posterior distribu-
tion reduces to its prior. The same phenomenon will occur
for the coefficients wki (cf. (5)).

Posterior distribution of zki

zki|Y,Z−ki,S,D,θ ∼ Ber
( p1
p1 + p0

)
(4)

p1 = πk exp
[ −1

2σ2
ε

(s2kid
T
k dk − 2skid

T
k (yi −

K∑
j 6=k

wjidj)
]

p0 = (1− πk)e0 = (1− πk).

Posterior distribution of ski
ski|Y,D,Z,S−(k,i),θ) ∼ N (µski

,Σski
) (5)

zki = 1⇒


Σski

= (σ−2ε dT
k dk + σ−2S )−1

µski
= σ−2ε Σski

dT
k (yi −

K∑
j 6=k

djwji)

zki = 0⇒ Σski
= σ2

S , µski
= 0

Posterior distribution of πk

πk|Z(k, :) ∼ Beta
(
a0 +

N∑
i=1

zik, b0 +N −
N∑
i=1

zik

)
. (6)

Posterior distribution of σ2
ε and σ2

S

σ2
ε|Y,D,W ∼ IG

(
e0 + NL

2 , f0 + 1
2‖Y −DW‖2F

)
(7)

σ2
S |S ∼ IG

(
c0 +

KN

2
, d0 + 1

2

N∑
i=1

sTi si

)
. (8)

3. Proposed method
We study the limiting behavior of the Gibbs sampler

described in Section 2. The main novelty is that our analysis
yields a parameter-free method.

3.1. Small Variance Asymptotic (SVA) Analysis

In Bayesian inference, the posterior (2) is the corner-
stone of the definition of estimators. We focus here on the
MAP point estimator which is obtained by maximizing (2)
or, equivalently, its neg-log posterior. Since the exact solu-
tion is difficult to obtain, one often resorts to Monte Carlo
integration or variational approaches to solve the solution.
In a manner akin to [10, 13, 14], we propose instead to
approximate the solution by analyzing the limiting behavior
of (2) as σ2

ε tends to zero.
Since the dictionary D is assumed over-complete, we

can reasonably assume that taking this limit will promote
a small reconstruction error, resulting in a non-sparse code
W. Therefore, it is necessary to scale the weight associated
to each factor with σε2. For all k ∈ J1,KK, we consider the
parametrization πk = exp

(
− λk

2σ2
ε

)
with λk > 0, so that

πk → 0 as σ2
ε → 0, hence promoting a parsimonious use of

the factor. With this dependence in mind, we consider the
following approximation of the MAP estimator

D̂, Ẑ, Ŝ, π̂ ' arg max
D,Z,S,π

lim
σ2
ε→0
−2σ2

ε logp(D,Z,S,π,θ|Y) (9a)

σ̂2
ε, σ̂

2
S ' arg max

σ2
ε,σ

2
S

− log p(σ2
ε, σ

2
S |Y, D̂, Ẑ, Ŝ, π̂). (9b)
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The discussion on the potential theoretical difficulties in
the inversion between the limit and the maximization is
postponed to the extended version of this work. Note that the
value of σ2

S in (9a) has no effect on the estimation. Indeed,
letting σ2

ε → 0, we see that the r.h.s. of (9a) becomes

tr
[
(Y −DW)T(Y −DW)

]
+

K∑
k=1

λk

N∑
i=1

Z[k, i]. (10)

The trace originates from the exponential function in the
Gaussian likelihood, and the penalty term - reminiscent of
`0-penalty - originates from the Bernoulli prior. It follows
that finding the MAP estimate for the dictionary learning
problem is asymptotically equivalent to solve

argmin
D,W,λ

∥∥Y −DW
∥∥2
F

+

K∑
k=1

λk
∥∥W[k, :]

∥∥
0

(11)

The solution of (11) is referred to as asymptotic MAP
(aMAP). Note that the choice of the regularization param-
eters λk is of importance since they should decrease as
the noise level σε increases. Moreover, unlike the standard
optimization problem (1), Eq. (11) penalizes the use of each
atom dk. The novelty of our approach is to benefit from
the Bayesian model in order to jointly estimate the hyper-
parameters σ2

ε, σ
2
S within the SVA framework. Indeed, once

the optimal value of D̂,Ŵ, π̂ is known, estimating θ is
equivalent to solve (9b). Next section describes the proposed
strategy to approximate the aMAP estimator.

3.2. BBG-SVA algorithm

We formulate the proposed BBG-SVA algorithm (cf.
Alg. 1) to solve the optimization problem (11). Letting
the noise variance tend to 0, BBG-SVA is deduced from
the limiting behavior of the Gibbs sampler described in
Section 2. In some cases, this analysis returns to taking the
mode of the posterior distribution.
Update dk. Define mk , ‖W[k, :]‖0. When mk 6= 0, we
deduce from (3) that the posterior distribution of the atoms
reduces to a degenerated Gaussian. Hence

dk =
1

N∑
i=1

w2
ki

N∑
i=1

wki(yi −
K∑
j 6=k

djwji). (12)

When mk = 0, as emphasized below (3), we sample
dk ∼ N (0, σ2

SIL). Finally, the updated vector dk is
normalized to avoid multiplicative indeterminacy.
Update zki. Let ρ = s2ki − skidk

T(yi −
∑N

`6=k s`id`) + λk.
Remembering that πk = exp(− λk

2σ2
ε
), we deduce from (4)

that p1 = exp(− ρ
2σ2

ε
) so lim

σε→0
p1 = +∞ if ρ < 0 and 0 if

ρ > 0. Since lim
σε→0

p0 = 1, we obtain{
zki = 1 if ρ < 0

zki = 0 if ρ > 0.
(13)

Input: Y, D, W, λ, σ2
S = 1

E← Y −DW ;
for each iteration t

for each k ∈ J1,KK
\\ Remove influence of atom k

E−k ← E + D[:, k] W[k, :] ;

\\ Update dk according to (12)
if ‖W[k, :]‖0 = 0 then

dk ∼ N (0, L−1IL)
else

dk ← E−kW[k, :]T;

dk ←
dk
‖dk‖2

;

\\ Update Z[k, :] acc. to (13)
stmp ←W[k, :] ;
stmp[W[k, :] = 0] ∼ N (0, σ2

S) ;
p← s�2tmp − 2stmp � (dT

kE−k) + λ[k] ;
W
(
k, p ≥ 0

)
← 0 ;

\\ Update S[k, :] acc. to (14)
`0 ←W[k, :] 6= 0 ;
W[k, `0]← dT

kE−k[:, `0] ;

\\ Restore influence of atom k
E← E−k −D[:, k] W[k, :] ;

\\ Update πk acc. to (15)
if ‖W[k, :]‖0 = 0 then

π[k]← 1/(N + 2);
else

π[k]← 1
N ‖W[k, :]‖0 ;

\\ Update σε acc. to (17)

σ2
ε ←

f0 + 0.5‖E‖2F
e0 + 0.5NL+ 1

;

\\ Update λ acc. to (16)
λ← −2σ2

ε log(π) ;

\\ Update σS acc. to (18)

σ2
S ←

d0 + 1
2‖W‖

2
F + 1

2 (KN − ‖W‖0)σ2
S

c0 + 1
2KN + 1

Output: dictionary D, code W, noise level σ2
ε

Algorithm 1: Proposed BBG-SVA algorithm.

When ρ=0, lim
σε→0

p1= lim
σε→0

p0=1 so we sample zki∼Ber( 1
2 ).

In practice, this case is seldom met.
Update ski. According to (5), the posterior distribution of
ski is normally distributed. However, when zki = 1, the
distribution degenerates as σ2

ε → 0. Henceski = 1
dT

k dk
dT
k (yi −

K∑
j 6=k

djwji) if zki = 0

ski ∼ N (0, σ2
S) otherwise.

(14)

Update πk then λk. According to (6), the posterior distri-
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bution of πk is beta distributed. Since a parsimonious use of
each atom is desired, we expect mk , ‖W[k, :]‖0 � N for
large values of N . The variance of the posterior then writes

var[πk|Z] ' mk(N −mk)

(mk +N)2(mk +N + 1)
' 1

N2
� 1

To avoid resorting to randomness, we choose to reduce the
distribution to its mode. Hence, for a0 = b0 = 1, the update

πk =
a0 +mk − 1

a0 + b0 +N − 2
=
mk

N
. (15)

Note that when mk = 0 and since a0 = b0 = 1, the mode
of the beta distribution is 0. In this case, we have found
that setting πk to a small value, e.g., πk = 1/N ' E[πk|Z],
leads to better performances. Finally, since πk = exp(−λk

σ2
ε
),

we deduce
λk = −2σ2

ε log(πk). (16)

Update σ2
ε and σ2

S . Using the same arguments as for the
update of πk, one can show that the variance of the posterior
distributions of both σ2

ε and σ2
S tends to be small for large

values of N . Again, we choose to update with respect to
the mode of the distribution, i.e.,

σ2
ε = Mode(σ2

ε|−) =
f0 + 1

2‖Y −DW‖2F
e0 + 1

2NL+ 1
(17)

σ2
S = Mode(σ2

S |−) =
d0 + 1

2‖S‖
2
F

c0 + 1
2KN + 1

. (18)

The originality of the approach is to mix deterministic /
random approaches. Future work aims at showing that each
deterministic move decreases the cost function. However,
since the objective function (11) is not convex, there is
no guaranties that one converges to a global minimizer.
Similarly to MCMC, we expect that such random moves
will allow for escaping from spurious minimizers.

4. Numerical experiments

In this section we illustrate the relevance of the dictio-
nary learnt with BBG-SVA on a denoising task.

4.1. Experiments set-up

A set of 5 images of size 512×512 is considered -
Barbara, Hill, Mandrill, Lena, Peppers - for 2 noise levels
σε = 25 and 40. Considering patches of size 8×8 (i.e.
dimension L = 64), there are N = (512 − 7)2 = 255025
overlapping patches for each image. In image processing,
when working on image patches of size 8×8, a dictionary
of size K=256 or 512 atoms is typically learnt [1, 3, 12].
In this experiment, we choose rather K = 300 for the
proposed BBG-SVA algorithm. This choice will be motived
in Section 4.2. Finally, all results are averaged over 10
Monte Carlo simulations.

Simulations are run on a personal laptop with a Python
implementation. Here, according to the model detailed in
Section 2, a random initialization is used for D and W =

0
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Figure 1. Evolution of BBG-SVA performances (PSNR of the reconstructed
image) seen as function of the dictionary size K for several images and
σε = 25 (left) and 40 (right).

Z � S. Only the first atom (column) of D and row of
W are initialized with the empirical mean and a vector of
ones, respectively. Denoting σ2 the empirical variance of
the residual error, the vectors π and λ are initialized with
1
K1K and −2σ2

ε log(π), respectively. Recall that none of
the parameters of eq (11) have been fixed. We emphasize
that the BBG-SVA approach infers all these parameters: D
and W, sparsity levels λ - originates from the parameter π
of the Bernoulli prior - and noise level σ2

ε.

4.2. Denoising results

Choosing the optimal size K. As stated in Section 4.1,
most methods select K = 256 or 512. Before comparing
BBG-SVA to other methods, we first motivate our choice
of dictionary size K. Figure 1 shows the evolution of the
PSNR obtained with BBG-SVA seen as a function of K
for two noise levels and several images. In all situations,
we observe that performances stabilize for some value of
K. As already observed in [15], these results suggest the
existence of an optimal size that depends on both the image
and the noise level. Moreover, overestimating K only affects
the computational cost of the method. We also observed that
BBG-SVA was able to perform some pruning, i.e., that some
atoms are not used when K is too big. For these reasons,
we found that K =300 was a reasonable choice.
Denoising results. We compare BBG-SVA denoising results
with: 1/ the original K-SVD [3], 2/ DLENE [16] - an
adaptive approach to learn overcomplete dictionaries with
an efficient number of atoms, 3/ the state-of-the-art method
for denoising BM3D [17] - block matching with 3D filtering
and 4/ BPFA [12] - a Bayesian model that resorts to a
Beta-Bernoulli process. Results from BM3D are recalled
for information only since we do not expect to perform
better. The four algorithms assume that the noise variance
and / or sparsity level are known, while the proposed model
automatically estimates both of them.

Table 1 gathers all the numerical results. Although
parameter-free, BBG-SVA outperforms K-SVD and achieves
performances comparable to DLENE and BPFA. BBG-SVA
even outperforms BM3D on Pepper; we made the same
observation for a similar - yet supervised - model [14].
Figure 2 displays typical denoising results obtained by using
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σε = 25 σε = 40
PSNR ≈ 20.14 dB PSNR ≈ 16.06 dB

Barbara 29.60 29.88 29.60 27.12 27.72 26.65
σ̂ = 25.5 28.82 30.72 σ̂ = 40.5 25.60 27.99

Hill 29.28 29.57 29.18 27.50 27.60 27.30
σ̂ = 25.8 28.58 29.85 σ̂ = 40.5 26.29 27.99

Mandrill 24.99 25.30 24.38 22.78 23.18 22.26
σ̂ = 27.5 24.88 27.85 σ̂ = 42.7 22.43 25.37

Lena 31.37 31.63 31.32 29.18 29.30 28.90
σ̂ = 25.4 30.45 32.08 σ̂ = 40.2 27.58 29.86

Peppers 31.47 30.00 29.73 29.38 27.57 27.36
σ̂ = 25.3 30.23 30.16 σ̂ = 40.2 27.27 27.70

Table 1. DENOISING RESULTS (IN DB) FOR NOISE LEVELS σ = 25 AND
40 ON 5 IMAGES. LEFT ARE BBG-SVA PSNR (TOP) AND ESTIMATED
NOISE LEVEL σε (BOTTOM). CENTER ARE PSNR USING BPFA (TOP),

DLENE (BOTTOM). RIGHT ARE K-SVD (TOP), BM3D (BOTTOM).

Figure 2. Denoising (σ = 40) results obtained by using BBG-SVA. From
left to right are the noisy, the denoised and the original images.

BBG-SVA on several examples of Table 1. Finally, note that
the noise level σε is inferred as well with good accuracy.
Except for Mandrill, the estimation error varies from 1.5 to
4.% for σε =25 and from 0.5 to 1.5% when σε = 40. This
accurate estimate is a benefit of this approach. We conclude
that BBG-SVA was able to automatically select relevant
values of the hyper-parameters in the objective function (11).

5. Conclusion

This paper presents a parameter-free yet computationally
efficient approach for dictionary learning (DL). The methods
results from a Small Variance Asymptotic (SVA) analysis
of a Bernoulli Gaussian Bayesian model for DL. Such an
analysis yields an objective function which is minimized
through a SVA analysis of the corresponding Gibbs sam-
pler. The main novelty is that the coupling parameters
resulting from the SVA analysis are also estimated within

the Bayesian framework. Therefore, the proposed approach
gathers both the flexibility of Bayesian modeling and the
numerical efficiency of optimization methods. The relevance
of the inferred dictionary has been assessed on a denoising
task, results are comparable to supervised methods. Future
work will investigate the computational cost of the method.
Finally, the SVA analysis proposed in [14] can be revisited
along the same lines.
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