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Abstract: Classification of brainwaves in recordings is of 

considerable interest to neuroscience and medical communities. 

Classification techniques used presently depend on the 

extraction of low-level features from the recordings, which in 

turn affects the classification performance. To alleviate this 

problem, this paper proposes an end-to-end approach using 

Convolutional Neural Network (CNN) which has been shown to 

detect complex patterns in a signal by exploiting its 

spatiotemporal nature. The present study uses time and 

frequency axes for the classification using synthesized Local 

Field Potential (LFP) data. The results are analyzed and 

compared with the FFT technique. In all the results, the CNN 

outperforms the FFT by a significant margin especially when 

the noise level is high. This study also sheds light on certain 

signal characteristics affecting network performance. 
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I. INTRODUCTION 

Interest in characterizing brainwaves has increased 
significantly among researchers in several disciplines in the 
past few decades. One reason for this is the need for 
improved analytics in a growing variety of applications 
ranging from detecting the onset of epilepsy/seizures and 
other signal characteristics, to the design of neuro-prosthetic 
brain-computer interface (BCI) devices[1][2]. For instance, 
engineers are using brain signals via BCI to control 
prosthetics and other medical aids for handicapped patients, 
and for those using insulin pumps. Another interesting 
analytics application used electroencephalography (EEG) 
patterns to recover visual information involved in face 
identification to reconstruct a facial image from neural 
signals related to a person’s thought[3]. 

Brainwaves can be broadly classified into five categories 
based on their oscillation frequencies. They are thought to be 
associated with the different physical and emotional states of 
the subject[4]. For this reason, detecting the type of brain-
wave prevalent temporally at particular sites is of great 
interest, and is being attempted now using multi-electrode 
configurations. The signals recorded typically have a poor 
signal-to-noise ratio (SNR) making it difficult for a linear 
method such as FFT to detect signal frequency reliably. 
Nonlinear techniques have been shown to be more successful 
in separating signals from noise. Popular non-linear 
techniques such as feed-forward neural networks require the 
extraction of features to operate effectively. So far, most of 
the effort has been focused on the development of methods 
for optimal feature extraction[5]. Various techniques such as 
Wavelet Transform, Power Spectral Density (PSD), Short 

Time Fourier Transform, autoregressive model, Principal 
Component Analysis have been applied to convert EEG 
information into low-level feature vectors which are then fed 
into off-the-shelf classifiers for classification. This has been 
a bottleneck in classification performance since most of these 
features are application-specific and are extracted under 
some assumptions which could introduce human bias. No 
matter how optimal the classification algorithm is, 
inadequate features could still lead to poor performance. That 
is the main reason that a good end-to-end model is required 
that can handle feature extraction and classification in a 
single framework. 

One promising framework is the Convolutional Neural 
Network (CNN). It has been successfully used in many 
computer vision and image processing tasks such as face 
recognition, object recognition and tracking, and image 
segmentation. CNN has been applied to speech 
recognition[6], music classification, Time-series prediction, 
and classification[7], [8] with encouraging results. CNNs 
excel at finding complex features of spatiotemporal data 
which are resistant to partial deformation, rotation or 
translation. This attribute makes it a perfect candidate to 
model data with poor SNR. CNNs also have another 
important trait of parameter sharing that reduces the total 
number of unknown parameters.  

This study makes use of the CNN based on the simple yet 
effective architecture developed by Oxford’s renowned 
Visual Geometry Group (VGG)[9] for the classification of 
brainwaves. The network relies on both the time and 
frequency domains to extract complex pattern for 
classification, making it more robust for noisy input. We 
performed our experiments using a synthesizing dataset with 
different noise levels to study how noise affects the 
performance of CNN for our application. The CNN results 
are compared with those from the traditional FFT method 
since this is often used in the brainwave classification[10]. 
As the noise level increases the CNN outperforms the FFT in 
classification performance.  

The main contributions of the paper include, 

1) Designing a suitable CNN and investigating its 

performance in the classification of brainwaves in 

simulated Local Field Potential (LFP) recordings. 

2) Gaining insights and characterizing the effect of noise on 

the CNN performance. 

3) Illustrating the advantages of the non-linear CNN 

approach over the linear FFT method in classification 

performance and in contrasting their features. 
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II. LOCAL FIELD POTENTIAL CHARACTERISTICS 

Brain activity consists of a mixture of an oscillatory and 
non-oscillatory pattern. The oscillatory pattern has been 
hypothesized to indicate neural communication and 
information processing, whereas non-oscillatory activity was 
believed to be a spontaneous brain activity as a result of data 
collection techniques. However, recent studies have found its 
relation in uncovering brain functions such as consciousness 
and learning. This non-oscillatory activity exhibits a 1/f-like 
power spectrum and hence is described as 1/f 
electrophysiological noise[11][12]. 

 There are various methods to record brainwaves. While 
EEG, which is recorded from the surface of the scalp is the 
most popular one, invasive methods including 
Electrocorticography (ECoG) and LFP provide more spatial 
and temporal resolution for brainwaves. In ECoG, the grid of 
electrodes is implanted on the exposed surface of the cerebral 
cortex of the brain to achieve a higher spatial and temporal 
resolution than EEG. To further improve the spatial and 
temporal resolution of the brainwave pattern and to get 
insights on the neuronal activity at deeper locations, metal or 
glass micro-electrodes or silicon probes are inserted within 
the cortical tissue or other deep brain structures. The signal 
obtained is then low-pass filtered (<250 Hz) to get the LFP 
pattern. Brainwaves are characterized by frequency (the rate 
at which neurons fire at the same time), amplitude (how 
many neurons fires at the same time) and phase. Depending 
on the oscillation frequency the brainwaves, they are broadly 

categorized as ‘Delta’(0.5-4 Hz), ‘Theta’(4-8 Hz), ‘Alpha’(8-
12 Hz), ‘Beta’(12-30 Hz) and ‘Gamma’(30-80 Hz)[13].  

The improved resolution of LFP recordings (compared to 
scalp recordings) can be very useful in more precise detection 
of neural activity. A single wave burst can be mathematically 
modeled as  

 
x(t)=A(t) cos(ω0+ϕ) +  n(t), -T≤ t ≤T  

(1) 

where, the Burst envelope A(t) can be modeled by a Gaussian  

 
A(t)=A0 exp (

-1

2σ2
 t2) 

(2) 

 

with σ2 controlling the burst width, and  

ω0 = brainwave angular frequency 

ϕ = random phase 

n(t) = pink noise whose PSD follows the 1/f characteristic 

mimicking 1/f electrophysiological noise. 

Fig. 1 shows a few LFP brainwave bursts for different noise 

levels. 

III. METHODOLOGY 

A CNN is a concatenation of many units and each unit is 
composed of the 3 layers, a convolutional layer, a max-
pooling layer, and an activation layer. The convolutional 
layer applies a set of filters to an input that processes a small 
local region at a time. This is based on the fact that the feature 
learned at a certain part of the input can be applied to the 
entire input space. A max-pooling layer performs progressive 
downsampling of the spatial size of feature maps created by 
the convolutional layer to reduce the number of parameters 
and computation, and hence avoids overfitting. It does so by 
taking the highest of feature map activations within a 
specified window (usually 2×2). It aids in making CNN 
robust to shifts and distortions in the input. An activation 
layer breaks the linearity in the network created by a 
convolutional layer. A stack of these layers reduces an input 
into a set of self-learned complex feature vector which is used 
by a set of fully connected layers for classification[14]. 

A. Network Architecture 

The Deep Convolutional Neural network used in this 
study is based on the VGG architecture[8]. Although it has 
the disadvantages of longer training time and requiring 
considerable processing power, its design simplicity and 
superior classification performance makes it appealing for 
our application. VGG creates a simple model by stacking a 
series of convolutional layers with small receptive field. It 
manages to achieve the performance of a model having a 
larger receptive field with a smaller number of parameters. 

 The network exploits the locality characteristics of a 
brainwave signal along time and frequency axes. A signal 
burst is passed through a filter bank of 16 different bandpass 
filters to introduce the frequency axis. The intuition behind 
this is that different brainwaves and additive noise have their 
energy concentrations in different frequency regions. The 
filters in the convolutional layers can efficiently represent 
these local structures and their combinations along the whole 
frequency axis, ensuring better network performance for 

 
Fig. 1 Brainwave burst examples: without noise (top), with noise at -

3.01 dB SNR (middle), with noise at -12.04dB SNR (bottom).  
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noisy input. Each filter in the filter bank is an FIR filter with 
order 200; having a 5Hz bandwidth. The cut-off frequency of 
the last filter is 80Hz which covers the entire range of 
brainwave oscillation frequency. A 3×3 size filters were used 
in the convolutional layer throughout the network along with 
a 2×2 window and stride for max-pooling. Using 
Convolutional layers multiple time in sequence provides a 
larger receptive area for extracting complex features. 
However, as the spatial area of input decreases after each 
max-pooling layer, the larger receptive field doesn’t provide 
additional useful information. As such the sequential use of 
the convolutional layer is progressively reduced in the higher 
layers of the network. Fig. 2 provides the structure and 
configuration of the proposed network. 

B. Network Training 

The training is carried out by optimizing the cross-
entropy loss function. Nesterov Adam (Nadam) optimizer 
with an adaptive learning rate has been used for faster 
training. The learning rate starts at 1×10-3 and is reduced by 
half each time if there is no improvement in validation loss 
for 10 epochs. Exponential Linear Units (ELU) are applied 
as activations for all layers except for the output layer where 
SoftMax provides the classification. Schirrmeister R. et 
al.[15] found batch normalization can provide performance 
improvement in brainwave decoding accuracy. As such, 
batch normalization has been applied between each 
convolutional and activation layer to improve the training 
speed and performance. The network prevents overfitting by 
using an L2 penalty regularizer of value 1×10-2 along with 
dropout. The dropout ratio is fixed at 0.2 in all convolutional 
layers and 0.5 for fully connected layers due to the higher 
number of trainable parameters. The training is done in small 
batches of 128 and is stopped after 100 epochs. After each 
epoch, the data is shuffled randomly to avoid any bias it may 
create for the optimization algorithm. Initialization of the 
network weights is important for the performance of such 
deep nets. As uniform He initialization (he_uniform) takes 
the non-linearity introduced by ELU into account, it is used 
in all layers with ELU as an activation function (all 
convolutional and first fully connected layer). The uniform 

Xavier initialization (glorot_uniform) is utilized for the 
output SoftMax layer. 

IV. EXPERIMENTS AND RESULTS 

To gain insight and understanding for end-to-end 
classification of brainwaves using CNN, we synthesized a 
dataset that exhibits the characteristics of LFP with 
brainwaves embedded using (1). A long-time sequence of 
LFP data is formed at a sampling rate of 1KHz, with pink 
noise added at a certain SNR. An initial energy detector is 
applied to detect the temporal locations where brainwave 
bursts may appear. A segment of 2 seconds long around the 
detected temporal location is isolated, which is then passed 
through the filter bank to generate the input of CNN for 
classification. The data collection has 20,000 burst segments, 
containing 5000 bursts for each of the brainwave categories: 
‘Theta’, ‘Alpha’, ‘Beta’ and ‘Gamma’. The total dataset has 
three collections, one that does not have noise, another at 
moderate SNR -2.88dB and one more at lower SNR -
11.93dB, resulting in a total of 60,000 bursts. 

A. Results 

The training of a neural network depends on the 
randomness and quality of the training dataset. We used 5-
fold cross-validation to test network performance, which was 
done separately for different SNRs. The average accuracy 
values of the 5-folds are shown in Fig. 3 along with FFT 
results for the three data collections. The FFT results are 
generated by 218- point FFT with zero padding. FFT 
identifies the brainwave category by determining the 
frequency range at which the peak in the magnitude spectrum 
lies. It behaves well in no noise situation and it even has 
slightly better performance than CNN. As FFT is a linear 
operator, its performance could suffer in an extremely noisy 
environment. The limitation of FFT is apparent in Fig. 3 as 
noise level increases, where CNN outperforms FFT by at 
least 20% in classification accuracy at low SNR.  

B. Analysis 

While it is not straightforward to determine the specific 
reasons for the superior performance of the convolutional 

 
Fig. 2 Convolutional neural network structure and configuration with a 

total number of trainable parameters. The convolutional layer parameters 

are denoted as conv<receptive field size> - <number of filters in that 

layer> 

  

 
Fig. 3 Classification results at different SNRs by FFT and CNN. The CNN 

results shown are the mean accuracies of 5-fold cross-validation 
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network, we can obtain some insight by examining its 
performance for the individual brainwave category. We have 
also used the ground truth information of each brainwave 
amplitude, the number of cycles and oscillation frequency to 
understand their effect on the CNN performance. 

Figs. 4 and 5 lists the normalized confusion matrices of 
CNN and FFT for the classification of the low SNR data. As 
pink noise has higher energy in lower frequencies, other 
brainwave categories are misclassified often as Theta which 
has the lowest frequency region among the four. This is 
reflected in Fig. 4 where theta has the lowest precision and 
highest recall values. It means the CNN is predicting most of 
the brainwaves as Theta and also has the lowest detection 
error. In general, the category having lower frequency range 
has lower precision. Similarly, there is a correlation between 
the width of frequency region for the other categories (apart 
from Theta) and their recall values where lower frequency 
range has lower recall values. This is because a lower 
frequency range has a higher number of signals near the 
category boundary which leads to a higher chance of 
misclassification. These results are consistent with those 

from using FFT and can be observed in Fig.5 where more 
than 50% of the other categories signals are classified as 
Theta.  

To scrutinize these results, Fig. 6 plots magnitude versus 
frequency of the misclassified brainwaves in the noiseless 
data set. The predicted categories are represented by different 
colors. Even with few misclassified signals, one can see a 
clear pattern where signals with their frequencies very close 
the category frequency boundary are misclassified, e.g., 
Theta waves are misclassified as Alpha. Another interesting 
pattern to notice is that most of these bursts have a lower 
amplitude. In the presence of noise, the issue of low 
amplitude brainwaves become more serious as such signals 
can be easily dominated by noise. So, as expected, a higher 
number of lower amplitude signals are misclassified as the 
noise increases. This is shown in Fig. 7(a), which represents 
a similar plot for the low SNR data set. Most of the signals 
that are misclassified due to low amplitude are predicted as 
Theta. This observation further supports the explanation for 
its lowest precision. In a similar plot for FFT in Fig. 7(b), no 
such patterns appear, and misclassification results are 
completely random to infer insights. 

We have also experimented with a 1D convolutional 
network which is a classical use of time domain convolution 
to find a relation between adjacent time samples using 
temporal information. After separating a burst, it is directly 
fed to the network by omitting the filter bank step. We found 
that by adding such a step and changing the network from 1D 
to 2D, the classification performance can increase up to 
3.85%. However, even without that performance boost, the 
1D network provides a significant improvement over FFT as 
well with a 79.07% classification accuracy on the low SNR 
data set. 

V. CONCLUSION 

The objective of this research is to study the possible 
improvement of brainwave classification through the use of 
CNN. This is achieved by creating the VGG architecture-

 
Fig. 4 Normalized confusion matrix for classification of low SNR 

data set by CNN 

 
Fig. 5 Normalized confusion matrix for classification of low SNR 

data set by FFT 

 
Fig. 6 Misclassified brainwaves plot for noiseless data by the CNN. 

Each dot represents a misclassified signal segment. The original 

category of the brainwave can be known from frequency axis while the 

predicted category is represented by color. 0: Alpha, 1: Beta, 2: 
Gamma, 3: Theta   
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based CNN that takes a filter bank output of a brainwave 
burst for classification. The purpose of the filter bank is to 
enhance performance in a noisy environment as the desired 
signal and noise can be located in different frequency 
regions. We have conducted our experiments using 
synthesized LFP brainwave signals that have better spatial 
and temporal resolution than EEG, where pink noise is added 
at several SNRs. 

As the noise level increases, the proposed CNN has 
significant performance improvement over the FFT method. 
Analysis indicates that the misclassification of CNN comes 
from brainwave bursts having low amplitudes and 
frequencies in the vicinity that separates different brainwave 
categories. On the other hand, FFT showed no such pattern 
and its performance limitation is purely caused by its linear 
processing nature and the amount of noise in the signal. We 
anticipate that CNN will outperform FFT for other signal 
processing and classification problems as well. Future work 
will include the comparison of CNN performance with 
nonlinear filtering methods that can be more robust in low 
SNR conditions, such as Empirical Mode Decomposition 
along with standard machine learning techniques including 
random forests and multitask regression analysis.  

The current study uses synthesized data for understanding 
and to gain insight. We plan to apply the proposed CNN to 
the actual LFP measurement for brainwave classification. 
Furthermore, we will examine the effect of varying segment 
burst lengths and of the pink noise characteristics on the CNN 
performance. We also plan to extend the study by considering 
it as a multilabel classification problem where the signal is 
the combination of overlapping alpha, beta, gamma and theta 
wave bursts having different frequencies and amplitudes. 
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Fig. 7 Misclassified brainwaves plot for low SNR data set by (a) convolutional network and (b)FFT. Each dot represents a misclassified signal segment. The 

original category of the brainwave can be known from frequency axis while the predicted category is represented by color. 0:Alpha, 1:Beta, 2:Gamma, 3: 

Theta 
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