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ABSTRACT
In this work, we describe limitations of the free-field propagation
model for designing broadband beamformers for microphone arrays
on a rigid surface. Towards this goal, we describe a general frame-
work for quantifying the microphone array performance in a gen-
eral wave-field by directly solving the acoustic wave equation. The
model utilizes Finite-Element-Method (FEM) for evaluating the re-
sponse of the microphone array surface to background 3D planar and
spherical waves. The effectiveness of the framework is established
by designing and evaluating a representative broadband beamformer
under realistic acoustic conditions.

Index Terms— Beamforming, Microphone Arrays, Acoustics,
FEM, Wave Equation.

1. INTRODUCTION

Broadband beamforming with microphone array is a key signal pro-
cessing module in many consumer electronics products, e.g., smart
phones and smart speakers [1–3]. The proliferation of microphone
arrays due to decreasing hardware cost and superior speech enhance-
ment performance, has made broadband beamforming a ubiquitous
embedded technology, and its performance has a critical impact on
the overall system.

A key requirement for broadband beamforming is to deliver con-
sistent performance across several octaves of frequencies, e.g., 80
Hz - 8 KHz in the voiceband case. Speech enhancement is typically
the system objective in most microphone arrays systems, rather than
mere signal detection, as in the narrowband case. This poses hard-
ware and algorithmic challenges in the design of microphone arrays
and the underlying beamforming procedure. Filter-and-Sum (F&S)
[4] has been a standard approach for designing a broadband beam-
former as an extension to a narrowband beamformer by stitching
frequency-domain coefficients that are computed using narrowband
beamforming techniques. Several narrowband beamforming tech-
niques, with different objectives and assumptions, become standard
design techniques, e.g., Delay-and-Sum (D&S) [2, 5], Minimum-
Variance-Distortionless-Response (MVDR) [6, 7], Subspace meth-
ods [3]. In this work, we do not address a particular beamformer
design algorithm. Rather, the emphasis is on the acoustic modeling,
which is common among these techniques. Without loss of general-
ity, MVDR-based F&S beamformer with a robustness constraint is
used as a case study for our analysis. At a given frequency and look-
direction, the two key design parameters in almost all beamforming
algorithms are the steering vector and the spatial coherence matrix.
Proper design of these two parameters is the subject of this work.

In Far-Field models, the acoustic wave is usually approximated
by plane-waves [8], and the steering vector at the direction/frequency
of a plane wave is defined as the observed acoustic pressure at the
different microphones when the microphone array is impinged with
the plane-wave. Near-Field steering vectors can similarly be approx-
imated by acoustic spherical waves. The observed wave-field in the

general case is the superposition of the incident wave-field and the
scattered wave-field. A typical approximation of the steering vector
is the free-field approximation, which assumes sound propagation in
free-field (at the speed of sound in air), and only the incident wave-
field is considered. This approximation is used almost universally in
the microphone array literature because it yields closed-form formu-
lae that simplify beamformer analysis. The main issue of the free-
field approximation is that it ignores the impact of the device surface
on the observed acoustic pressure, i.e., the scattered wave-field. This
impact, as will be shown, can significantly change the microphone
array behavior at certain frequencies and angles.

A possible remedy to this problem is to rely on anechoic lab
measurements to quantify the device response to incident waves.
However, this is a time-consuming and high-cost solution, and im-
perfect experimental settings could lead to noticeable modeling
errors, especially in near-field cases. In this work, we describe a
simulation-based approach for acoustic modeling of microphone
array on rigid surface by solving the Helmholtz wave equation us-
ing Finite-Element-Method (FEM) for an incident wave-field [9].
Prior works that studied the impact of scattered field on microphone
arrays used spherical harmonic decomposition for specific form-
factors (e.g. sphere, cylinder) [10–12] (and references, therein).
However, these methods are restrictive in the choice of device form-
factors (e.g. do not include modern smart-speaker form-factors) and
beamforming techniques. In comparison, the FEM method proposed
in this paper provides three notable contributions: (i) a methodology
to compute the steering vector for microphone arrays mounted on
solid hard surfaces without the need for expensive anechoic cham-
ber measurements, (ii) ability to design any type of beamformer that
relies on steering vectors; these include MVDR beamformer [2], lin-
early constrained minimum variance (LCMV) beamformer [13, 14],
and polynomial beamformer [15], and (iii) extension of the pro-
posed method to generic device form-factors that are used for smart
speakers.

We use the following notations. Bold lower-case and upper-case
letters denote a column vector and matrix, respectively. AT and AH

denote the transpose and conjugate transpose, respectively, of A, and
Am,n is the matrix entry at position (m,n). Θ , [θ, φ]T denotes
the polar and azimuth angles, respectively, in a spherical coordinate
system such that θ is measured w.r.t. the z-axis, and φ is measured
w.r.t. the x-axis on the x-y plane. Ψ(ω) denotes the noise coherence
matrix, of sizeM×M at frequency ω, whereM denotes the number
of microphones. Additional notations are introduced when needed.

2. BACKGROUND

2.1. Wave Equation

The acoustic wave equation [16] is the governing equation for the
propagation of sound waves at equilibrium in elastic fluids, e.g., air.
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The homogenous wave equation has the form

∇2p̄− 1

c2
∂2p̄

∂t2
= 0 (1)

where p̄(t) is the acoustic pressure, and c is the speed of sound in
the medium. In this work, we consider only the practical case of
homogenous fluid with no viscosity.

In practice, the wave equation is usually solved in the frequency
domain using the Helmholtz equation to find p(ω):

∇2p+ k2p = 0 (2)

where k , ω/c is the wave number. At steady state, the time-domain
and frequency-domain solutions are Fourier pairs [17]. In our mod-
eling, we work only with the homogenous Helmholtz equation under
various boundary conditions. The boundary conditions are deter-
mined by the geometry and the acoustic impedance of the different
boundaries. We assume the device has a rigid surface, therefore, it is
modeled as a sound hard boundary.

2.2. Beamforming Strategies

Beamforming is a microphone-array signal processing technique
that allows emphasizing the user’s speech from a desirable look-
direction (LD) while suppressing interferences from other direc-
tions. Here, we process microphone elements such that the signals
arriving from look-direction are combined in-phase, while signals
arriving from other directions are combined out-of-phase. Denote
the position of the m-th microphone by rm, and the signal acquired
at the m-th microphone for frequency ω by x(w, rm). Then, the
signal acquired by the microphone array can then be expressed as:

x(ω, r) = [x(ω, r1) x(ω, r2) . . . x(ω, rM )]T . (3)

Denoting the spectrum of the desired source signal by s(ω) and the
ambient noise captured by the microphone array as n(ω), we can
express x(ω, r) as:

x(ω, r) = v(ω,Θ)s(ω) + n(ω), (4)

where, v(ω,Θ) , [v1(ω,Θ) v2(ω,Θ) . . . vM (ω,Θ)]T is the
frequency and angle-dependent steering vector.

The beamformer design involves computation of complex-
valued weights for each frequency and microphone denoted by
w(ω) , [w1(ω) w2(ω) . . . wM (ω)]T , which are then applied
to x(ω, r) to obtain the beamformer output y(ω):

y(ω) = wH(ω)x(ω, r). (5)

We are interested in using FEM modeling for the design of F&S
beamformers that can be expressed as a constrained optimization
problem, and the solution to which provides the optimal beamformer
filters. This covers various F&S beamformers like MVDR, maxi-
mum SNR, and LCMV beamformers [13]. In this work, we use,
without loss of generality, the MVDR beamformer with a robustness
constraint to present our analysis.

2.3. Beamforming Metrics

We use three metrics to assess the performance: array gain (AG),
white noise gain (WNG) [2], and microphone array channel capac-
ity (MACC) [18]. The AG metric is defined as the improvement in

signal-to-noise-ratio (SNR) offered by the beamformer: AG(ω) ,
SNRout(ω)
SNRin(ω)

. After some algebraic manipulations, one can show [2]:

AG(ω,ΘLD) =
|wHv(ω,ΘLD)|2

wHΨ(ω)w
, (6)

where ΘLD denotes the look-direction, and Ψ , Λ/β is the nor-
malized noise correlation matrix with

Λm,q =

∫ π

0

∫ 2π

0

vm(ω,Θ)v∗q(ω,Θ)σ2
N (ω,Θ) sin(θ) dθ dφ,

(7)
where σ2

N (ω,Θ) denotes the distribution of noise power as a func-
tion of ω and Θ, and

β =

∫ π

0

∫ 2π

0

σ2
N (ω,Θ) sin(θ) dθ dφ. (8)

The WNG metric is the SNR improvement provided by the beam-
former when the noise components at the microphones are statisti-
cally independent [2]:

WNG(ω,ΘLD) =
|wHv(ω,ΘLD)|2

wHw
. (9)

The MACC metric [18] aims at providing a characterization of the
microphone array that is independent of the beamformer realization.
It is analogous to MIMO channel capacity in wireless communica-
tion. If the source location is known, then the MACC is defined as

MACC(ω,ΘLD) , log
(

1 + P‖S−
1
2 UHv(ω,ΘLD)‖2

)
(10)

where USUH is the singular value decomposition of Ψ, and P is
the input power.

3. ACOUSTIC MODELING

3.1. Acoustic Plane-Waves

Acoustic plane waves constitute a powerful tool for analyzing the
wave equation, and it provides a good approximation of the wave-
field emanating from a far-field point source [11]. The acoustic pres-
sure of a plane wave with wave vector k is defined at a point r in the
3D space as:

p(k) , p0e
−jkT r (11)

This is a solution of the inhomogeneous Helmholtz equation with
a far point source, where ‖k‖ = k (note that, for a given k in the
Helmholtz equation, there are two degrees of freedom in choosing
k). Further, a general solution to the homogenous Helmholtz equa-
tion can be approximated by a linear superposition of plane waves of
different angles [17,19–21]. These properties render acoustic plane-
waves a key tool in designing far-field beamforming for microphone
arrays, where the microphone array response to each plane wave pro-
vides a sufficient set for the beamformer design.

The total wavefield at each microphone of the microphone array
when an incident plane-wave pi(k) impinges on the device has the
general form:

pt = pi + ps (12)
where pt and ps refer to the total and scattered wavefield respec-
tively. The total wavefield, pt, at each microphone is computed by
inserting (12) in the Helmholtz equation (2) and solving for ps with
appropriate boundary conditions. The details of this modeling are
described in section 3.2. It is evident from (11) that an incident
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plane-wave does not have magnitude information, and it is fully pa-
rameterized by its phase. This is not true for the scattered wavefield,
ps which represents the reflections/diffractions due to the rigid de-
vice surface. This magnitude information in ps is critical in resolv-
ing phase ambiguity due to microphone array geometry.

If the microphone array is composed of discrete microphones
in space, and the area of each microphone is much smaller than the
wavelength, then a reasonable approximation is to set ps = 0 in
(12). This is referred to as free-field approximation. In this case,
the total wavefield, pt, is fully determined by the wavenumber k in
(11), and the (x, y, z) coordinates of each microphone. It is obvious
that, free-field approximation is not accurate if the microphone ar-
ray is on a rigid surface. Nevertheless, this approximation has been
utilized almost universally in the literature for acoustic modeling in
beamformer design. In the following section, we show that the free-
field approximation does not provide a good approximation of the
total field under important practical cases.

3.2. FEM Modeling

The modeling objective is to compute the total sound field in (12)
at each microphone when the device is impinged by a plane wave.
This resembles physical measurement in anechoic room with a dis-
tant point source. FEM is one of the standard approaches for solv-
ing the Helmholtz equation numerically. In our case, we need to
solve the Helmholtz equation for the total wavefield at all frequen-
cies of interest with an incident plane wave. The device surface
is modeled as sound hard boundary. The microphone is modeled
as a point receiver on the surface if the microphone surface area is
much smaller than the wavelength, otherwise, its response is com-
puted as the integral of the acoustic pressure over its area. To have
a true incident plane-wave, the external boundary should be open
and non-reflecting. In our model, the device is enclosed by a closed
boundary, e.g., a cylinder or a spherical surface. To mimic open-
ended boundary, there are two choices: (i) Matched boundary whose
impedance is matched to the air impedance at the frequency of inter-
est, (ii) Perfectly matched layer, which defines a special absorbing
domain that eliminates reflection and refractions in the internal do-
main that encloses the device [22]. The merits of each approach is
beyond the scope of this paper. The FEM solves for pt in (12), which
is equivalent to solving for only the scattered field, ps, after insert-
ing incident plane wave model (11) in the Helmholtz equation. The
acoustics module of COMSOL multiphysics package [23] is used for
this FEM numerical solution, and the simulation is rigorously vali-
dated with exact and measured results on different form-factors. For
example, in Fig. 1, we show the total pressure field of two micro-
phones on a spherical surface with analytical and simulated solution.
Both amplitude and phase responses match excellently with the an-
alytical solution [24]. Further, in Fig. 2, we show an example of
simulated and measured acoustic pressure of a rectangular micro-
phone array mounted on a slanted cube. In the plot, we show the
inter-channel response, i.e., {Hi(ω)/Hr(ω)}i6=r , where r is a ref-
erence microphone. The phase difference between simulated and
measured responses is linear, which is expected when the positions
of the device in both cases are not perfectly aligned. For more com-
parisons between simulated/theoretical and measured acoustic pres-
sure responses, one may refer to [25, 26].

Note that, the above procedure is not limited to plane-wave as
we only need to specify the incident pressure field, which could be,
for example, spherical wave for near-field modeling. The procedure
is repeated for a grid of frequency and incident angles to build a dic-
tionary of total pressure {pt(ω, θ, φ)}ω,θ,φ that is used in subsequent
analysis.
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Fig. 1: Comparison of FEM and analytical solutions for spherical surface of
radius 5 cm. Top: magnitude response, bottom: phase response. Mic 2 is in
the middle of sphere facing the incident wave; Mic 1 is facing away from it.
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Fig. 2: Normalized acoustic pressure of a rectangular microphone array on
a slanted cube for simulated and measured cases for a incident plane wave at
direction (θ, φ) = (90◦, 210◦) (simulated response is in dotted lines, mea-
sured response in solid lines, with different colors for different microphones).
Top: magnitude, bottom: phase difference

4. ANALYSIS OF FREE-SPACE BEAMFORMING

To illustrate the benefits of FEM modeling, we use the MVDR beam-
former with a robustness constraint, formulated as a constrained con-
vex optimization problem [14]:

ŵ = arg min
w

wHΨ w

such that wHv(ω,ΘLD) = 1,

|wHv(ω,ΘLD)|2

wHw
≥ γ, (13)

where the first constraint is called the distortionless constraint [2],
and the second constraint is the WNG constraint, which imposes ro-
bustness in the beamformer design that can be controlled through
γ [14]. Further, the WNG constraint enables a more fair compar-
ison between the total and free-field beamformer designs because
the WNG is bounded in both cases. Without loss of generality, we
assume a spherically diffuse noise field. The optimization problem
in (13) is solved using a convex optimization solver to obtain the
beamformer weights ŵ. Note that the proposed FEM-model based
method can be similarly extended to other beamformer designs like
the MVDR [2], LCMV [13], and polynomial beamformer [15].

2019 27th European Signal Processing Conference (EUSIPCO)



!"#

$$

$%&'()*(+,

Fig. 3: Simulation setup for FEM-based beamforming. The form-
factor is a combination of a cylindrical bottom and a top surface
with a spherically-curved shape.

4.1. Analysis Methodology

The MVDR solution can be obtained from (13) by using vi and vt
as steering vectors for free-field (FF) and total-field (TF), respec-
tively. To compute Ψ, we use analytical method for canonical device
shapes, such as finite cylinder and sphere [24]. For a general device
shape, the FEM tool is used to simulate the steering vectors for a
uniform grid of azimuth and polar angles. Then, Ψ is numerically
computed from (7) and (8), with σ2

N (ω,Θ) = 1 for the spherically
diffuse noise field.

We now compare the performance of MVDR beamformer de-
signed using FF and TF assumptions. For our study, we use the
setup in Fig. 3, which has 5 microphones on the top of a cylin-
der of height 130 mm and diameter of 70 mm; the top surface of
the cylinder has a spherically-curved shape. This surface does not
have a closed-form solution for the Helmholtz equation, which ne-
cessitates the use of the proposed FEM method. The origin of the
coordinate system coincides with the center microphone with z axis
pointing upwards, and the x-y plane parallel to the bottom face of
the cylinder. The coordinates of the microphones are: (x, y, z) =
{(ro, 0, zo), (0, ro, zo), (−ro, 0, zo), (0,−ro, zo), (0, 0, 0)}, where
ro = 30 mm and zo = −3 mm. Lastly, we set γ = −25 dB.

4.2. Results

We evaluate the microphone array metrics under Free Field (FF) and
Total Field (TF) setups for the array in Fig. 3 at two arrival angles:
(θ, φ) = (90◦, 0◦) and (30◦, 0◦). The results are summarized in
Figs. 4-6 for the three performance metrics.
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Fig. 4: AG performance showing the difference between FF and TF.
Note how the array gain is higher, especially at high frequencies.

At θ = 90◦, i.e., x-y plane, the TF case is slightly better for the
AG and MACC, but the WNG performance for the TF case is better
than the FF case. This is explained by noting that the steering vectors
in the TF case have variations in both phase and amplitude (over
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Fig. 5: WNG performance. Note that even with the higher array gain
from Fig. 4, the WNG is better for the TF configuration.
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Fig. 6: MACC performance, which corresponds well with the AG
performance in Fig. 4.

microphones) in comparison to the FF case, which only has phase
variations. The amplitude variations increase the spatial diversity
for the TF case, which can be used to improve the spatial directivity
of the beamformer. At θ = 30◦, the TF case has WNG performance
better than the FF over the full frequency range; the AG for TF case
is noticeably better than FF case for all frequencies, and significantly
better for frequencies beyond 2 kHz. Note that the WNG curves are
lower-bounded by−25 dB, because of the WNG constraint specified
in (13). Note also that in all cases, the MACC for the TF case is
noticeably better than the FF case, because the FF case ignores the
magnitude information, which provides invaluable characterization
of the look direction.
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Fig. 7: Magnitude of scattered wavefield, ps, (in dB) at two plane
wave angles.

The big deviation of the FF performance at θ = 30◦ is attributed
to the magnitude of the scattered wavefield (which is ignored in the
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FF case). This is illustrated in Fig. 7, where we show the magni-
tude of the scattered wavefield at the five microphones at both an-
gles (where the incident plane wave has the same magnitude in both
cases). Note that, the scattered wavefield at θ = 30◦ is approxi-
mately 10 dB stronger than θ = 90◦ especially at high frequencies,
which is manifested clearly in the corresponding AG/WNG/MACC
behavior. This significant deviation of the free-field case demon-
strates the limitation of this modeling and the necessity of incor-
porating the scattered field component through FEM modeling for
beamformer design.

5. CONCLUSION AND FUTURE WORK

The free-field model does not provide accurate modeling for broad-
band beamformer design, especially when the scattered wavefield
is significant. Therefore, designing beamformer metrics based on
free-field modeling results in suboptimal performance. To mitigate
this issue, we described a simulation-based framework for modeling
the total wavefield, which is shown to noticeably improve the beam-
former design. The model is universal for any device surface, and it
could be used for both near-field and far-field modeling by comput-
ing the steering vectors of spherical and plane waves, respectively.
Future work will utilize the results of this work to develop novel de-
sign techniques for broadband beamformer and generic form-factors
that are based on this realistic microphone array modeling [27]. Ad-
ditionally, we expand the array processing metrics, and show a close
matching of simulated and measured beampatterns for our proposed
method [27].
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