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Abstract—This paper describes a procedure for Angles-of-Arrival
(AoA) estimation for a uniform linear array (ULA) with missing
sensors. The novelty of the approach is that, rather than using
AoA estimates obtained from contiguous subarrays, we use
estimates for the corresponding signal subspaces. The report
shows that the ESPRIT invariance equations for each contiguous
subarray define an operator that “propagates” the signal sub-
space beyond the physical array. Care needs to be taken to ensure
the same bases are used for each subarray. The estimates of the
signal subspaces for the missing array elements are appropriately
combined to yield an estimate of the signal subspace for the
complete ULA. The paper only addressed the case of one missing
sensor, but the approach can be readily generalised. Simulations
show that the proposed method yields AoA estimates which are
very close to those obtained if there was no missing sensor, in
contrast to the case where the measurements from the missing
sensor were zero. In order to appropriately combine the estimates
for the missing signal subspace terms, the report assessed the
accuracy of signal subspace estimation as a function of the
number N of ULA elements. Simulations indicate that, in the
examples considered, the variance of these estimates decreases
only as N1/3 which is surprising given that the variance of AoA
estimates (at least for one source) decrease as N3. The paper
suggests that further study of this empirical result is warranted.
Index Terms—Sensor array signal processing, subspace methods.

I. INTRODUCTION

Subspace based angles-of-arrival (AoA) estimation methods
are now in common use in sensor array signal processing
applications. In particular ESPRIT algorithms [1], [2] are of
considerable interest to researchers and practitioners. ESPRIT
algorithms exploit a particular kind of invariance property
which arises due to particular geometric relationships between
two selected sub-arrays. In standard ESPRIT (S-ESPRIT)
there are two identical (non-overlapping) subarrays which
have a fixed spatial offset. In Unitary ESPRIT (U-ESPRIT),
the uniform structure of a ULA (or URA) can be exploited
to obtain a similar invariance property to S-ESPRIT. In U-
ESPRIT, overlapping sub-arrays are used. U-ESPRIT applies
a specific transformation to the array data model which
yields a real valued array manifold matrix. This has some
computational benefits but its main application is in uniform
rectangular arrays where correct pairing between elevation
and azimuth AoA estimates is automatically achieved [2]. In
this report, we utilise the same specific overlapping subarrays

as for ULA U-ESPRIT, but we don’t apply the U-ESPRIT
data transformation.

In practical problems, “missing” sensors can arise. This may
be due to sensor failure, or the sensor array may not have
the complete uniform structure of a ULA. In either case,
our approach is to try and estimate the signal subspace data
corresponding to missing sensor(s) so that ULA U-ESPRIT
can be applied. The approach presented here relies on there
being at least one pair of ULA subarrays for which U-ESPRIT
can be applied. An estimate of the “missing” components of
the signal subspace is then obtained. After this processing
step, U-ESPRIT can be applied to the complete array.

In the literature, there are two kinds of array interpolation
problems. The first constructs the “virtual array” manifold
matrix corresponding to a specified number of AoAs,
usually spanning some sector of physical space. A fixed
transformation matrix is applied to the actual array manifold
response at the set of chosen AoAs, and is chosen to minimise
the square error with respect to the virtual array responses
(see e.g. [3], [4], [5], [6]). Although these approaches differ
from that presented here, they are motivated by a similar idea
– to transform an (irregular) array to a regular one (e.g. ULA)
where specific algorithms (e.g. root-MUSIC or ESPRIT) that
require this geometry can then be applied.

The second kind of approach uses some signal information
to improve the interpolation. For example, [7] weights
the approximation error between the actual and virtual
array responses with the conventional beamformer (CBF)
response, whilst [8] use the CBF response to identify AoA
regions where source energy is localised. The idea is that
the approximation is then made better over the range of
AoAs where incident sources lie. A high resolution subspace
method can then be applied to the virtual array (a ULA with
root-MUSIC in the case of [7], ESPRIT in the case of [8]).

Perhaps the closest related work in the literature to our
approach is that of [9] where, among other problems, the
issue of interpolating a linear array to replace missing sensor
data is accomplished using a combination of forwards and
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backwards (spatially across the array) linear predictors. The
conventional beamformer is applied to the virtual array data.
Two approaches are considered - one whereby the missing
sensor data is estimated, the other where missing terms in
the sample covariance matrix (due to missing sensors) are
estimated. In some sense, the latter approach resembles more
the approach presented here, which we now briefly describe.

Our approach is essentially based on estimating the missing
components in the signal subspace. ESPRIT algorithms
essentially determine a co-ordinate transformation matrix
between the signal subspace components corresponding to
two specified subarrays. Our main idea is that provided we
estimate this transformation matrix through estimation of the
array covariance matrix for all available sensors, we can use
the transformation matrix to then estimate the missing signal
subspace components due to missing sensors. Our method
does not directly estimate AoAs from the incomplete sensor
data, nor does it estimate the missing sensor data per se as
in [9]. We are not aware of any similar approach, so claim
some novelty in our idea.

It should also be noted that “ESPRIT-like” methods for AoA
estimation when array invariance properties are not met (e.g.
[10]), or where there are multiple invariances (e.g. [11]) have
also been proposed. However these methods don’t use array
interpolation ideas.

Due to space limitations here, in this paper we don’t conduct
a detailed comparison with other methods for dealing with
missing sensors, including the works cited above. However
such a comparison is suggested as useful for ongoing work.

II. SENSOR ARRAY SIGNAL MODEL

In this section, we revise the narrowband sensor array signal
model for a uniform linear array (ULA) with uncorrelated
(spatially uniform) sensor noise.

We consider a ULA with element spacing δ wavelengths
located on the x axis with sensor n located at x = nδλ,
for n = 0, . . . , N − 1. Consider a uniform narrowband plane
wave incident on the array at angle θ with respect to the normal
of the array. The steering vector associated with the incident
signal has elements

an(θ) = e2πi n δ sin(θ) , (1)

for n = 0, . . . , N − 1. Our baseband signal model assumes
M < N incident signals on the array with AoAs θm,m =
1, . . . ,M . The resulting model for the signals at sensor n at
sample instant t is

xn(t) =

M∑
m=1

an(θm) sm(t) + vn(t) .

Stacking the sensor samples xn(t) into a N × 1 vector x(t)
and similarly for vn(t), and stacking the source signals sm(t)
into a M × 1 vector s(t) we obtain

x(t) = A(θ) s(t) + v(t) ,

where A(θ) = A(θ1, . . . , θM ) is a N × M matrix having
a(θm) as its column m. We assume that the source signals
are realisations of temporally uncorrelated zero-mean w.s.s.
random processes with covariance Rs, assumed full rank M .
We assume that the sensor noise is a zero-mean, temporally
uncorrelated w.s.s. process with (spatial) covariance σ2 I . We
can “stack” T snapshots x(tn), n = 1, . . . , T sideways into a
N×T matrix X and similarly for s(t) and v(t) giving the data
model X = A(θ)S + V . The spatial covariance data matrix
is given by

Rx = A(θ)RsA(θ)H + σ2 I .

Let Rx = Φ Λ ΦH be the eigenvalue decomposition, where Φ
is unitary and Λ is diagonal with strictly positive elements on
its diagonal. The signal subspace is the space spanned by the
eigenvectors (columns of Φ) corresponding to the M largest
eigenvalues. If the eigenvalues are ordered in decreasing value,
then we denote Es = [φ1 · · · φM ]. A key result is that
the columns of Es and those of A(θ) span the same linear
subspace - the signal subspace.

III. ARRAY INVARIANCE AND ULA U-ESPRIT
In this section, we briefly review ULA U-ESPRIT [2]. We de-
fine two sub-arrays, the first consisting of elements 0, . . . , N−
2, and the second consisting of elements 1, . . . , N −1. Whilst
the term “Unitary ESPRIT” refers to a (unitary) data pre-
processing step resulting in real-valued subspaces, we’ll re-
tain the terminology here although we work directly with a
complex version. The main difference here, compared to S-
ESPRIT [1], is that elements are shared between subarrays.
Define the two (N − 1)×N subarray selection matrices

J1 =
[
IN−1 0N−1

]
, J2 =

[
0N−1 IN−1

]
,

where ON−1 is the (N − 1)-dimensional (column) vector
consisting of all zeros. From the form of the ULA steering
vector (1),

J2A(θ) = J1A(θ)D(θ) , (2)

where D(θ) = diag
(
e2πiδ sin(θ1), . . . , e2πiδ sin(θM )

)
. Under

the full rank assumption on Rs, the (M -dimensional) range
spaces of the steering matrix A(θ) and the array data co-
variance matrix subspace Es coincide, so there is a M ×M
non-singular matrix T such that A(θ) = Es T where the
columns of Es span the signal subspace. These columns
are the eigenvectors of Rx corresponding to the M largest
eigenvalues. Thus, in (2),

J2Es = J1Es
(
T D(θ)T−1

)︸ ︷︷ ︸
Ψ

. (3)

As described in [14], when the signal subspace is not known
exactly and is derived from the sample covariance estimate,
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this equation only holds approximately and needs to be solved
using least-squares or total least-squares techniques resulting
in an estimate Ψ̂ of Ψ. It should be noted that the eigenvalues
of Ψ are precisely the diagonal elements of D(θ) which
contain the source signals’ AoAs. So we can estimate the
source signal AoAs by finding the eigenvalues of Ψ̂. We can
also think of the matrix Ψ as being an “operator” which
“shifts” the signal subspace corresponding to sub-array one
onto the co-ordinates of the signal subspace corresponding
to sub-array two in an analogous manner to the matrix D(θ)
which “shifts” the corresponding subspaces in the co-ordinates
specified by the columns of A(θ).

IV. ULA ESPRIT WITH A MISSING SENSOR

This paper is concerned with the case where there is a single
missing sensor in the array. The case where there are more
than one missing sensor can be similarly considered by
obvious generalisation. Suppose initially, that N ≥ 7 and that
the missing sensor, labelled Nm ∈ {3, . . . , N − 4}. We define
two subarrays - the first, designated the left subarray consists
of sensors {0, . . . , Nm− 1} ; the second, designated the right
subarray consists of sensors {Nm + 1, . . . , N − 1}. Under
the assumed conditions, both the left and right subarrays
have a minimum of three elements and are each ULAs.
Thus ULA U-ESPRIT can be applied independently to each
of the left and right subarrays. Within each of the left and
right subarrays, two subarrays will be constructed. For the
left subarray, define subarray one to consist of elements
{0, . . . , Nm − 2} and subarray two to consist of elements
{1, . . . , Nm−1}. For the right subarray, define subarray three
to consist of elements {Nm + 1, . . . , N − 2} and subarray
four to consist of elements {Nm + 2, . . . , N − 1}. Figure 1
shows the subarray labelling.

Fig. 1. ULA with a missing sensor - sub-array labelling.

Now denote the selection matrices for the left and right subar-
rays as JL ∈ RNm×N and JR ∈ R(N−Nm+1)×N respectively,
i.e.

JL =
[
INm

0Nm,N−Nm

]
,

JR =
[

0N−Nm−1,Nm+1 IN−Nm−1

]
,

where 0n,m is the zero matrix of size n × m. Denote by
xL(t) = JL x(t), and xR(t) = JR x(t), the left and right
subarray data for snapshot t respectively.

Now, the key idea here is that we need to compute the
combined signal subspace for the left and right subarrays
together. Firstly, we compute the sample covariance matrix
for all available data,

R̂LR =
1

T

T∑
t=1

[
xL(t)
xR(t)

] [
xL(t)H xR(t)H

]
.

Now assuming that the number of signals M < N − 1, then
we can compute the corresponding signal subspace estimate
ÊLR as the (N − 1) × M matrix having as its columns
the eigenvectors of R̂LR corresponding to the M largest
eigenvalues. Then it will hold that there is a M ×M matrix
T̃ such that (approximately)

A(θ) =

[
AL(θ)
AR(θ)

]
= ÊLR T̃ =

[
ÊL
ÊR

]
T̃ .

where AL(θ) = JLA(θ), AR(θ) = JRA(θ), ÊL = JL ÊLR,
and ÊR = JR ÊLR.

Define the subarray selection matrices K1,K2,K3,K4, as

K1 =
[
INm−1 0Nm−1

]
,

K2 =
[

0Nm−1 INm−1

]
,

K3 =
[
IN−Nm−2 0N−Nm−2

]
,

K4 =
[

0N−Nm−2 IN−Nm−2

]
,

where K1,K2 ∈ R(Nm−1)×Nm and K3,K4 ∈
R(N−Nm−2)×(N−Nm−1). From sec. III, we then have
the invariance equations (regarded as approximations)

K2 ÊL = K1 ÊL Ψ̂1,2

K3 ÊR = K4 ÊR Ψ̂4,3 , (4)

where Ψ̂1,2, Ψ̂4,3 ∈ CM×M . We regard Ψ̂1,2 as an operator
in the signal subspace co-ordinates which “shifts” to the
right one sensor. Similarly, We regard Ψ̂4,3 as an operator
in the signal subspace co-ordinates which “shifts” to the left
one sensor. We’ll use these matrices to construct an estimate
for the signal subspace terms corresponding to the missing
sensor. It’s worth observing that in the absence of noise, (thus
dropping the circumflex), Ψ1,2 = T̃ D(θ) T̃−1 = Ψ−1

4,3.

Let eTm denote the 1×M row vector forming the components
of the signal subspace corresponding to the missing sensor,
then we define an estimate êTm by (with obvious abuse of
notation),

êTm =
ÊL(Nm − 1, :) Ψ̂1,2 + ÊR(0, :) Ψ̂4,3

2
. (5)

Thus we construct the estimate for the signal subspace terms
for the missing sensor by propagating the values for the
sensors either side using the shift matrices and averaging. It’s
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possible to do this because the construction of the estimated
signal subspace ÊLR means that the co-ordinates for the signal
subspaces for the left and right subarrays are the same. Thus
we can construct

Ês =

 ÊL
êTm
ÊR

 ,

and apply ULA ESPRIT as outlined in sec. III.

V. NUMERICAL SIMULATIONS

In order to assess the accuracy of the interpolation method
described in sec. IV, we simulated a scenario with two incident
source signals at angles θ1 = −20◦, θ1 = 30◦ with equal
SNR. All simulations averaged over 10,000 realisations. In
each case, the number of data snapshots per batch is T = 100.
In the simulation we chose a ULA with N = 11 elements.
The missing sensor was Nm = 5 giving a left subarray with 5
elements and right subarray with 5 elements. Figure 2 shows
the estimated RMS error in AoA estimation (errors for each
source are averaged) for four different ESPRIT algorithms
: (i) the complete subarray (i.e. no missing sensor - this
provides the benchmark), (ii) the full array but setting the
data for the missing sensor to zero, (iii) the average of the left
subarray alone and the right subarray alone, and (iv) using the
interpolation method described in sec. IV.

Fig. 2. Shows the AoA estimation accuracy (RMSE) for ESPRIT (i) applied
to the full array data, (ii) using the described interpolation method to estimate
full signal subspace, (iii) setting the missing sensor data to zero, and (iv) the
average performance using the two separate subarrays (left and right). Here
the missing sensor was sensor Nm = 5 and the ULA has N = 11 elements.

Discussion

We observed that the AoA estimation errors are roughly
the same for each subarray as would be expected because
each sub-array has the same number of elements in this
example. In this case, when we combine the two estimated

signal subspace terms for the missing sensor (one from
each subarray) with equal weighting as in eqn. (5). If the
sub-arrays have different numbers of elements we should take
into account the different variances in these signal subspace
estimates for each sub-array when combining them. So
rather than a simple arithmetic average of the two subspace
estimates as in (5), we should weight them with respect to
their variances. In order to introduce this refinement to the
algorithm, we need some idea as to how the variance of
the signal subspace estimate for a ULA augmented with a
single additional element, varies with the number of array
elements. There’s nothing obvious about this in the literature
and may be a matter for future study. However, we can
use simulations to obtain an empirical estimate of this
relationship. The task is made more difficult in that the signal
subspace estimates will generally be specified by different
bases (i.e. eigenvectors). As a measure of the accuracy of
the signal subspace estimates, we use the projective distance
between the estimated subspace and the true one (the span
of the columns of A). Figure 3 shows the behaviour of this
distance for the estimated signal subspace for a N element
ULA with one additional “virtual” element appended to the
array. The same signal scenario as above is used with SNR
fixed at -9 dB for each signal. The linear fit to the data (on
a log-log axis scale) gives a slope of approximately -1/3. So
an empirical relationship might be conjectured as variance
∝ N−1/3.

(a)

Fig. 3. The estimated variance of the distance d(Ês, A) between the true
signal subspace (columns of A) and its estimate Ês for a one-element
augmented ULA of N elements. Here there are two incident signals at
θ = −20◦, 30◦ with common SNR = -9 dB. There are T = 100 snapshots.

If we have a convex combination Y = αX1 + (1− α)X2 of
random variables X1 and X2, the value of parameter α which
minimises the variance of Y is given by

α =
σ2

2

σ2
1 + σ2

2

,

where σ2
1 , σ

2
2 are the variances of X1 and X2 respectively.

So for the problem at hand, where we have two estimates
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(eqn. (5)) ÊL(Nm − 1, :) determined from the left subarray
having Nm elements, and ÊR(0, :) determined from the right
subarray having N−Nm−1 elements. Accordingly, we should
construct the estimate for the missing element signal subspace
according to

êTm =
(N −Nm − 1)−1/3 ÊL(Nm − 1, :) +N

−1/3
m ÊR(0, :)

N
−1/3
m + (N −Nm − 1)−1/3

. (6)

We assessed the performance of the weighting scheme in (6)
with the N = 16 element array and subarrays of size 5 and 10.
Thus the weighting terms in (6) are 0.44 and 0.56, quite close
to the equal weighting case. Indeed, as shown on figure 4, there
is virtually no difference observed between the two methods.
The weights would be expected to be significantly different if
there was a large difference in the number of elements in each
subarray, but in this case, the performance gain in using the
interpolation scheme proposed in this paper would be expected
to be small compared to just using the larger of the subarrays.

(a)

Fig. 4. Estimated MSE for AoA estimation using (i) full array, (ii) inter-
polation with equal weight (eqn. (5)), and (iii) interpolation with wights
defined in eqn. (6) as SNR is varied. Here there are two incident signals
at θ = −20◦, 30◦ with equal SNR. There are T = 100 snapshots.

VI. CONCLUSION AND ONGOING WORK

We have considered the problem of AoA estimation for a
ULA with missing sensors. In particular, we have considered
the case where there is a single missing sensor, although
the method is easily generalised. The idea is to use ULA
ESPRIT to estimate the signal subspaces for the array
without including the missing sensor. We then solve the
ESPRIT invariance equations for each contiguous subarray
(a ULA) and then use these solutions to “propagate” the
signal subspaces to the missing sensor. These subspace
estimates are combined and then an estimate for the signal
subspace for the complete ULA is obtained. We can then apply
ULA ESPRIT for the complete array to obtain AoA estimates.

Numerical simulations are used to validate the approach. In
the example considered, AoA estimation accuracy is very
close to the case where there is no missing sensor data

whilst using both subarrays together, or ignoring the missing
sensor data yields significantly worse estimates. The issue
of combining the signal subspace estimates obtained from
subarrays having different numbers of sensors was addressed.
Optimally combining the estimates requires knowledge of
how the variance of these estimates behaves as the number
of subarray elements varies. For the example considered,
simulations suggest that this variance decreases as N1/3 (for
N elements) which is somewhat surprising given that, at least
for the one source signal case, we know the variance of the
AoA estimate decreases as N3 [13]. This result is supported
by anecdotal “evidence” that good AoA estimates can still be
obtained even if the subspace approximation is relatively poor.
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