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Abstract—Full-rank spatial covariance analysis (FCA) is a
method for blind source separation. It is based on a model for
observation mixtures with flexible source-related parameters, and
an EM algorithm is known to optimize the parameters. FCA has
the potential to obtain high-quality separations. However, the
algorithm for FCA is computationally demanding and sensitive
to initializations. This paper proposes two practical techniques
to make effective use of FCA. The first one is to acceler-
ate the execution of the algorithm by using single-instruction-
multiple-data (SIMD) instructions run on a GPU. The second
one is to initialize the parameters appropriately by scanning
the observation mixtures. Experimental results show that high-
quality separations were achieved for 6-second real-room speech
mixtures (4 sources and 3 microphones) with a computational
time of less than 8 seconds.

Index Terms—blind source separation (BSS), full-rank spatial
covariance analysis (FCA), expectation-maximization (EM) algo-
rithm, matrix inversion, single instruction multiple data (SIMD)

I. INTRODUCTION

Blind source separation (BSS) has been studied for a
long time as various signal processing and machine learning
methods [1–5]. Independent component analysis (ICA) [2]
is perhaps the most popular one where observation mixtures
are linearly transformed into separated signals, and the sta-
tistical properties (e.g., independence and non-Gaussianity)
of the transformed signals are optimized. ICA assumes that
the mixing system is invertible. On the other hand, full-
rank spatial covariance analysis (FCA) [6–9] models observed
multichannel mixtures with a more general mixing system
than ICA does, which consists of full-rank spatial covariance
matrices and therefore is not necessarily invertible. Because of
this flexibility, FCA has several merits over ICA, such as it can
be applied to an underdetermined case where the number N of
sources is larger than the number M of observation channels.
There have been proposed extensions to richer models [10–
15] based on FCA. However, there are prices we have to
pay when performing FCA: demanding computation for the
optimization and sensitivity to initialization. They prevent us
from the practical usage of FCA. In this paper, we propose
two practical techniques that solve the two issues of FCA.

The first one is regarding the acceleration of optimiza-
tion by fully using single-instruction-multiple-data (SIMD)
instructions, which are especially effective with a graphics
processing unit (GPU). A popular algorithm for FCA has
been recognized based on expectation-maximization (EM) [6,
7]. There are many M ×M matrices whose inverse matrices
need to be calculated in the EM algorithm, and the proposed

SIMD technique accelerates those inverse matrix calculations.
An approach [8, 9] has already been proposed for accelerating
FCA by assuming that all the spatial covariance matrices
can be jointly diagonalized. The assumption exactly holds
when the number of sources is equal to two, but in general
it approximates the model of FCA. The proposed SIMD
approach, on the other hand, optimizes the model parameters
exactly by following a full-rank spatial covariance model with
no approximations.

The second technique is regarding the initialization of model
parameters. A simple but moderately effective way is to ran-
domly initialize the parameters. However, it does not consider
and exploit the characteristic of observation mixtures. In this
paper, we propose a simple method to initialize spatial covari-
ance matrices, a dominant part of the model parameters. The
method is based on online clustering that scans the observation
mixtures, and tries to exploit the observation characteristic for
obtaining good initial ones that will be converged close to the
true spatial covariance matrices of sources.

This paper is organized as follows. Section II first describes
an FCA mixture model, and then the corresponding EM algo-
rithm especially with clarifying its computationally demanding
parts. Sections III and IV explain the proposed acceleration
and initialization techniques, respectively. Section VI reports
experimental results from which we recognize how FCA was
accelerated especially by a GPU and how the initialization
contributed to high-quality separations.

II. FULL-RANK SPATIAL COVARIANCE ANALYSIS

A. Model and objective function

Suppose that n = 1, . . . , N sources are mixed and observed
at m = 1, . . . ,M sensors (e.g., microphones in an audio
case). Let the sensor observations at a time indexed by t,
t = 1, . . . , T , be denoted by an M -dimensional complex
vector xt ∈ CM with xt = [x1t, . . . , xMt]

T. In FCA, a
mixture vector xt follows a zero-mean multivariate complex
Gaussian distribution

p(xt|0, X̂t) ∝
1

det X̂t

exp
(
−xH

t X̂
−1
t xt

)
(1)

with a covariance matrix

X̂t =
N∑

n=1

vntAn + B (2)

parameterized with M×M matrices {An}Nn=1, B, and nonneg-
ative scalars {{vnt}Nn=1}Tt=1. Here, An is a spatial covariance
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matrix that encodes the spatial property from source n to all
M sensors, and B is a noise covariance matrix. We assume
An and B to be Hermitian and positive semidefinite. A scalar
vnt represents the temporal power of source n at time index t.

The parameters θ = {{An}Nn=1,B, {{vnt}Nn=1}Tt=1} can
be optimized in a maximum likelihood sense, equiva-
lently by minimizing the negative log-likelihood C(θ) =
− log p({xt}Tt=1|θ). We assume the likelihood is decomposed
into time samples

p({xt}Tt=1|θ) =
T∏

t=1

p(xt|0, X̂t) . (3)

Substituting (1) into (3), we have the objective function

C(θ) =
T∑

t=1

[
xH
t X̂

−1
t xt + log det X̂t

]
(4)

to be minimized.

B. Source separation

Let ynt ∈ CM and bt ∈ CM be latent variables that satisfy

xt =
N∑

n=1

ynt + bt . (5)

Once the parameters θ are optimized, separated signals and
noises are obtained as the conditional expectations typically
by the multichannel Wiener filters

ỹnt = E[ynt|xt, θ] = vntAnX̂
−1
t xt , (6)

b̃t = E[bt|xt, θ] = BX̂−1
t xt , (7)

respectively.

C. Expectation-Maximization (EM) algorithm

The objective function (4) with (2) can be minimized by an
EM algorithm [6, 7].

E-step calculates the conditional expectations Ỹnt and B̃t

of the outer product of latent vectors ynt and bt as

Ỹnt = E[ynty
H
nt|xt, θ] = ỹntỹ

H
nt + (I− vntAnX̂

−1
t )vntAn ,

(8)
B̃t = E[btb

H
t |xt, θ] = b̃tb̃

H
t + (I− BX̂−1

t )B , (9)

respectively.
M-step updates the model parameters by

vnt ←
1

M
tr
(
A−1
n Ỹnt

)
, (10)

An ←
1

T

T∑
t=1

1

vnt
Ỹnt , (11)

B← 1

T

T∑
t=1

B̃t . (12)

The EM algorithm iterates the E-step and M-step for a
predefined number of times or until convergence with some
criterion.

Algorithm 1 Sequential calculation of inverse matrices
1: procedure SEQMATINV
2: for t = 1 to T do
3: X̂−1

t ← inv(X̂t)
4: end for
5: end procedure

D. Demanding Matrix Inverse Calculations

The EM algorithm involves the task of calculating the
inverse matrices for all X̂t, t = 1, . . . , T . With an ordi-
nary sequential computing model, we typically perform the
procedure shown in Algorithm 1, where inv(·) is a built-in
function that calculates the inverse of a matrix. The procedure
is computationally demanding especially when the number T
of samples is large.

III. ACCELERATION USING SIMD INSTRUCTIONS

In this section, we propose to calculate many inverse matri-
ces and other types of mathematical operations efficiently by
using SIMD instructions.

A. Matrix Inverse

Suppose that we have T Hermitian matrices X̂t, t =
1, . . . , T , each of which has size M×M . Concatenating them,
we have a tensor Q = [X̂1, . . . , X̂T ] of size M ×M × T . Let
the results of calculating the inverses for all the T matrices be
stored in a tensor R = [X̂−1

1 , . . . , X̂−1
T ].

Let a Hermitian matrix be expressed in a block form

X̂t =

(
q qH

q Q

)
(13)

where q is a scalar, q is a vector, and Q is a matrix of size
(M−1)×(M−1). We employ a formula regarding the inverse
of a block matrix [16](

q qH

q Q

)−1

=

(
q−1

(
1 + q−1qHS−1q

)
−q−1qHS−1

−q−1S−1q S−1

)
(14)

with
S = Q− q−1qqH , (15)

which can be derived from the Sherman–Morrison formula.
Algorithm 2 describes the proposed SIMD procedure

SIMDMATINV for calculating the inverse matrices. Line 5
calculates (15) for t = 1, . . . , T in a SIMD manner. Lines
from 6 to 9 calculate (14) for t = 1, . . . , T again in a SIMD
manner. In the description, let Q(m, l, :) and R(m, l, :) be
tensor slices of size 1×1×T which contain the (m, l)-elements
[X̂t]ml and [X̂−1

t ]ml of all the T matrices, respectively. On
the other hand, let Q(m̄, l̄, :) and R(m̄, l̄, :) be tensors of
size (M − 1) × (M − 1) × T where the m-th row and
l-th column of X̂t and X̂−1

t are eliminated for all the T
matrices, respectively. In the element-wise multiplication · and
division / operators, so-called Matlab’s “singleton expansion”
or NumPy’s “broadcasting” occur if necessary. The algorithm
calls other SIMD procedures SIMDMV and SIMDVV, which
will be explained in the next subsection.

2019 27th European Signal Processing Conference (EUSIPCO)



Algorithm 2 SIMD calculation of inverse matrices
1: procedure SIMDMATINV(Q) . Q: size M ×M × T
2: if M is 1 then
3: R ← 1/Q(1, 1, :)
4: else
5: S ← Q(1̄, 1̄, :)−Q(1̄, 1, :) · Q(1, 1̄, :)/Q(1, 1, :)
6: R(1̄, 1̄, :)←SIMDMATINV(S)
7: R(1̄, 1, :)← −SIMDMV(R(1̄,1̄,:),Q(1̄,1,:))/Q(1,1,:)
8: R(1, 1̄, :)←R(1̄, 1, :)H

9: R(1, 1, :)← (1−SIMDVV(Q(1,1̄,:),R(1̄,1,:)))/Q(1,1,:)
10: end if
11: return R
12: end procedure

Algorithm 3 SIMD vector-vector multiplications (inner prod-
uct)

1: procedure SIMDVV(Q, R) . Q: size 1×M × T , R: size
M × 1× T

2: S ← 0’s of size 1× 1× T
3: for m = 1 to M do
4: S ← S +Q(1,m, :) · R(m, 1, :)
5: end for
6: return S
7: end procedure

B. Other Mathematical Operations

For other several operations than matrix inversion, we also
employ SIMD calculations as much as possible. Due to space
limitations, we do not explain them all, but the two SIMD
procedures called from SIMDMATINV.

Algorithm 3 describes the procedure SIMDVV. It calculates
the inner product of each tth vector of Q = [qH

1 , . . . ,q
H
T ]

and tth vector of R = [r1, . . . , rT ], and stores the tth result
st = qH

t rt in a tensor S = [s1, . . . , sT ] of size 1× 1× T .
Algorithm 4 describes the procedure SIMDMV. It calcu-

lates the matrix-vector multiplications of each tth matrix of
Q = [Q1, . . . ,QT ] and tth vector of R = [r1, . . . , rT ], and
stores the tth result st = Qtrt in a tensor S = [s1, . . . , sT ] of
size M × 1× T .

IV. INITIALIZATION OF PARAMETERS

Before performing the EM algorithm, the parameters θ =
{{An}Nn=1,B, {{vnt}Nn=1}Tt=1} should be initialized. Since the
algorithm gradually improves the parameters, the initialization
is important for reaching a good convergence point where
sources are well separated.

In this section, we propose a new but simple method
that initializes the spatial covariance matrices {An}Nn=1 by
scanning the observations xt, t = 1, . . . , T . It is based on
online clustering with a similarity measure sim(xtx

H
t ,An)

between two matrices. Algorithm 5 shows the procedure.
First, all An, n = 1, . . . N , are initialized as identity matrices.
Then, for each time frame t, the similarities between xtx

H
t and

all An, n = 1, . . . N , are calculated, and the most similar An∗

is selected (line 6) and updated (line 7). Regarding similarity
measures sim(xtx

H
t ,An), we propose to employ

sim(xtx
H
t ,An) =

tr(xtx
H
t An)

tr(xtxH
t ) tr(An)

=
xH
t Anxt

||xt||2 tr(An)
, (16)

Algorithm 4 SIMD matrix-vector multiplications
1: procedure SIMDMV(Q, R) . Q: size M ×M × T , R: size

M × 1× T
2: S ← 0’s of size M × 1× T
3: for m = 1 to M do
4: S ← S +Q(:,m, :) · R(m, 1, :)
5: end for
6: return S
7: end procedure

Algorithm 5 Initializing full-rank covariance matrices
1: procedure INITMAT({xtx

H
t }Tt=1, N )

2: for n = 1 to N do
3: An ← I . identity matrix of size M
4: end for
5: for t = 1 to T do
6: n∗ = argmaxN

n=1sim(xtx
H
t ,An)

7: An∗ = An∗ + xtx
H
t

8: end for
9: return {An}Nn=1

10: end procedure

which is slightly modified from matrix cosine similarity [17].
Having the matrices {An}Nn=1 initialized in the above man-

ner, we do not consider a special strategy for the initialization
of the other parameters, i.e., B and {{vnt}Nn=1}Tt=1. In the
experiment reported in Sect. VI, they were simply initialized
as B = λI with λ = 10−3 and with I being an identity matrix,
and vnt = 1 for all n = 1, . . . , N and t = 1, . . . , T .

V. FULL-BAND CASE

So far, we have considered a time sequence of observation
vectors xt, t = 1, . . . , T . Let us call this a narrow-band case.
To separate real-room audio mixtures with delay and reverber-
ations, we typically apply a short-time Fourier transformation
(STFT) to the time-domain mixtures. In this case, as the result
of STFT, we have observation vectors xtf for time index t and
frequency-bin index f . Let us call this a full-band case where
there are many frequency bins f = 1, . . . , F .

The two techniques described so far can also be employed in
a full-band case by the notation change summarized in Table I.
The acceleration technique proposed in Sect. III would benefit
more in a full-band case than in a narrow-band case, because
of a larger SIMD data size T ×F as shown in the last line of
the table.

In a full-band case, all frequency bins are linked regarding
the SIMD computation. However, in the statistical model (1)
and (2), the parameters of different frequency bins are not
linked, and there exist permutation ambiguities of the bin-wise
separated signals ỹntf . To align the ambiguities, in this paper,
we simply follow the ideas [18, 19] based on calculating

domnf (t) =
tr(Anf ) vntf∑N
o=1 tr(Aof ) votf

, (17)

0 ≤ domnf (t) ≤ 1, indicating how the nth separation
dominates the mixture at time-frequency slot (t, f). Then,
we cluster the time sequences domnf , n = 1, . . . , N and
f = 1, . . . F , to align permutations.
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TABLE I
EXTENSION FROM NARROW-BAND TO FULL-BAND

narrow-band full-band
observation mixture xt xtf

separation ỹnt ỹntf

Gaussian cov. matrix X̂t X̂tf

source spatial cov. matrix An Anf

noise cov. matrix B Bf

source temporal power vnt vntf
SIMD data size T T × F

Distance: 120cm

Loudspeakers

Microphones 70°

150°

245°

315°

Room size: 4.45 × 3.55 × 2.5 m

Height of microphones and loudspeakers: 120 cm

Fig. 1. Experimental setup

VI. EXPERIMENTS

We performed experiments to separate three or four speech
sources (N = 3 or 4) with from two to five microphones
(M = 2, 3, 4, 5). We measured the impulse responses from the
sources (the loudspeakers) to the microphones under the room
conditions shown in Fig. 1. The room reverberation time was
130 ms. The mixtures at the microphones were constructed
by convolving the impulse responses and 6-second English
speech sources. The sampling frequency was 8 kHz. The frame
width and shift of STFT were 128 ms and 32 ms, respectively.
Consequently, the numbers of time frames and frequency bins
were T = 201 and F = 513, respectively.

A. Acceleration

Figure 2 shows how FCA was accelerated by using the
SIMD-based calculations. The EM algorithm was coded with
Matlab R2018a and run on an Intel Core i7-8700K (3.70GHz)
processor together with GeForce GTX 1080 Ti as a GPU. The
computational time was measured by using Matlab’s tic and
toc for each case. We observe that the proposed SIMD-based
acceleration with a GPU, GPU (SIMD all), was considerably
effective for all M = 2, 3, 4, 5. The SIMD-based matrix
inversion (Algorithm 2) was effective even without GPU,
CPU (SIMD all), as long as the number of microphones was
small, but not so effective as M increases.

Figure 3 shows the separation performance with three
microphones (M = 3) measured in signal-to-distortion ratios
(SDRs) [20] for the number of iterations. The discontinuities

Fig. 2. Computational times for N = 4 sources: for 100 iterations with
varying number M of microphones (left), and with M = 3 microphones up
to 1000 iterations (right). GPU and CPU indicate the use of GPU or not.
SIMD all corresponds to situations where we employed SIMD calculations
as much as possible as Sect. III explains. On the other hand, in SIMD w/o
inv situations, we employed the sequential Algorithm 1 instead of the SIMD
Algorithm 2.
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Fig. 3. Improvements of separation performance as iterations went on for
eight combinations of sources in each N = 3 (left) and N = 4 (right) cases.

of the SDR values were due to the non-smoothness of the
permutation alignment results. We observe that 100 iterations
were sufficient for obtaining good separations. Coming back to
Fig. 2, we see that for 100 iterations the proposed technique
GPU (SIMD all) took less than 8 seconds for the 6-second
mixture. This was practical merit over the others that took
more than 100 seconds.

B. Parameter Initialization

We compared three methods Pro, Sep, and Ran for pa-
rameter initialization. Pro corresponds to the proposed method
described in Sect. IV. In Sep, we executed a source separation
method [19] to obtain soft masks wntf , 0 ≤ wntf ≤ 1, and
then the source covariance matrices and the temporal powers
were initialized as

Anf ←
1

T

T∑
t=1

wntfxtfx
H
tf , (18)

vntf ←
wntf

M
xH
tfA

−1
nf xtf , (19)

respectively. In Ran, the temporal powers vntf were randomly
initialized with nonnegative numbers and the covariance matri-
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Separation performance (N=3)
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Separation performance (N=4)

Fig. 4. The effects of parameter initializations examined for eight combina-
tions of sources in each source-number case. The number of iterations was 100
for all cases. The proposed method Pro performed the best in all combinations.
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Fig. 5. The effects of parameter initializations examined for a four-source
case (N = 4). Sep started from a situation where sources were separated
by another method [19]. However, the separations were not well improved
even after many iterations. The proposed method Pro started from a situation
where sources were not separated but converged to a well-separated situation.
The random initialization Ran converged to a slightly-separated situation.

ces Anf were initialized as identity matrices. In both Sep and
Ran cases, the noise covariance matrices Bf were initialized
in the same manner with the proposed method Pro.

Figures 4 and 5 show the effects of parameter initializa-
tions. The number of microphones was three (M = 3). The
proposed method Pro outperformed the other two. See the
figure captions for the details.

VII. CONCLUSION

To make FCA easier to use and more effective for a real-
world BSS task, we proposed two practical techniques. The
SIMD-based acceleration was shown to be effective in the
experiments especially with a GPU, achieving speedups of
more than 10 times over the other implementations. The
parameter initializations for spatial covariance matrices have
shown to effective for the EM algorithm, reaching good
separations after a hundred of iterations. Future work will
include the application of such an acceleration technique to
the other BSS methods, e.g., multichannel NMF [7, 10, 11].

REFERENCES

[1] C. Jutten and J. Herault, “Blind separation of sources, part I: An adap-
tive algorithm based on neuromimetic architecture,” Signal processing,
vol. 24, no. 1, pp. 1–10, 1991.

[2] A. Hyvärinen, J. Karhunen, and E. Oja, Independent Component Anal-
ysis. John Wiley & Sons, 2001.

[3] A. Cichocki and S. Amari, Adaptive Blind Signal and Image Processing.
John Wiley & Sons, 2002.

[4] S. Makino, T.-W. Lee, and H. Sawada, Eds., Blind Speech Separation.
Springer, 2007.

[5] E. Vincent, T. Virtanen, and S. Gannot, Audio source separation and
speech enhancement. John Wiley & Sons, 2018.

[6] N. Duong, E. Vincent, and R. Gribonval, “Under-determined reverberant
audio source separation using a full-rank spatial covariance model,”
IEEE Trans. Audio, Speech, and Language Processing, vol. 18, no. 7,
pp. 1830–1840, Sep. 2010.

[7] S. Arberet, A. Ozerov, N. Duong, E. Vincent, R. Gribonval, F. Bimbot,
and P. Vandergheynst, “Nonnegative matrix factorization and spatial
covariance model for under-determined reverberant audio source sep-
aration,” in Proc. ISSPA 2010, May 2010, pp. 1–4.

[8] N. Ito, S. Araki, and T. Nakatani, “FastFCA: Joint diagonalization
based acceleration of audio source separation using a full-rank spatial
covariance model,” in Proc. EUSIPCO, 2018, pp. 1667–1671.

[9] N. Ito and T. Nakatani, “Fastfca-as: Joint diagonalization based acceler-
ation of full-rank spatial covariance analysis for separating any number
of sources,” in Proc. IWAENC, 2018.

[10] A. Ozerov and C. Févotte, “Multichannel nonnegative matrix factoriza-
tion in convolutive mixtures for audio source separation,” IEEE Trans.
Audio, Speech and Language Processing, vol. 18, no. 3, pp. 550–563,
Mar. 2010.

[11] H. Sawada, H. Kameoka, S. Araki, and N. Ueda, “Multichannel exten-
sions of non-negative matrix factorization with complex-valued data,”
IEEE Trans. Audio, Speech, and Language Processing, vol. 21, no. 5,
pp. 971–982, May 2013.

[12] M. Togami, Y. Kawaguchi, R. Takeda, Y. Obuchi, and N. Nukaga,
“Optimized speech dereverberation from probabilistic perspective for
time varying acoustic transfer function,” IEEE Transactions on Audio,
Speech, and Language Processing, vol. 21, no. 7, pp. 1369–1380, 2013.

[13] T. Otsuka, K. Ishiguro, H. Sawada, and H. G. Okuno, “Bayesian non-
parametrics for microphone array processing,” IEEE/ACM Transactions
on Audio, Speech, and Language Processing, vol. 22, no. 2, pp. 493–
504, 2014.

[14] J. Nikunen and T. Virtanen, “Direction of arrival based spatial covariance
model for blind sound source separation,” IEEE/ACM Transactions on
Audio, Speech, and Language Processing, vol. 22, no. 3, pp. 727–739,
2014.

[15] A. Liutkus, D. Fitzgerald, Z. Rafii, B. Pardo, and L. Daudet, “Kernel
additive models for source separation,” IEEE Transactions on Signal
Processing, vol. 62, no. 16, pp. 4298–4310, 2014.

[16] W. W. Hager, “Updating the inverse of a matrix,” SIAM review, vol. 31,
no. 2, pp. 221–239, 1989.

[17] H. J. Seo and P. Milanfar, “Detection of human actions from a single
example,” in Proc. ICCV, 2009, pp. 1965–1970.

[18] H. Sawada, S. Araki, and S. Makino, “Measuring dependence of bin-
wise separated signals for permutation alignment in frequency-domain
BSS,” in Proc. ISCAS 2007, 2007, pp. 3247–3250.

[19] ——, “Underdetermined convolutive blind source separation via fre-
quency bin-wise clustering and permutation alignment,” IEEE Trans.
Audio, Speech, and Language Processing, vol. 19, no. 3, pp. 516–527,
Mar. 2011.

[20] E. Vincent, S. Araki, F. Theis, G. Nolte, P. Bofill, H. Sawada, A. Ozerov,
V. Gowreesunker, D. Lutter, and N. Duong, “The signal separation evalu-
ation campaign (2007–2010): Achievements and remaining challenges,”
Signal Processing, vol. 92, no. 8, pp. 1928–1936, Aug. 2012.

2019 27th European Signal Processing Conference (EUSIPCO)


