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Abstract—Blind inverse filtering using multi-channel linear
prediction (MCLP) in short-time Fourier transform (STFT)
domain is an effective means to enhance reverberant speech.
Traditionally, a speech power spectral density (PSD) weighted
prediction error (WPE) minimization approach is used to esti-
mate the prediction filters, independently in each frequency bin.
The method is sensitive to the estimation of desired signal PSD. In
this paper, we propose an auto-encoder (AE) deep neural network
(DNN) based constraint for the estimation of desired signal PSD.
An auto encoder trained on clean speech STFT coefficients is
used as the prior to non-linearly map the natural speech PSD.
We explore two different architectures for the auto-encoder: (i)
fully-connected (FC) feed-forward, and (ii) recurrent long short-
term memory (LSTM) architecture. Experiments using real room
impulse responses show that the LSTM-DNN based PSD estimate
performs better than the traditional methods for reverberant
signal enhancement.

Index Terms—Dereverberation, Multi channel linear predic-
tion, Auto encoder, Deep neural network, prior

I. INTRODUCTION

Hands-free distant speech communication inside an enclo-

sure is adversely affected by the reflection of sound from the

walls and the other surfaces (reverberation) [1]. Reverberation

alters the natural spectro-temporal modulations in speech

affecting its intelligibility, and the performance of automatic

speech recognition and source localization systems (ex. camera

steering) [2]–[5]. In this paper, we consider enhancement of

the reverberant speech of a single (static) speech source in

an interference-free but reverberant environment, using multi-

microphone recorded signals.

Blind inverse filtering of the late reverb component using

multi channel linear prediction (MCLP) in the short-time

Fourier transform (STFT) domain has been shown to be

effective for reverberant speech enhancement [6], [7]. The late

reverberant signal component is modeled using delayed linear

prediction in each frequency bin of STFT, with prediction

residual as the desired enhanced signal. Maximum likelihood

(ML) estimation of the MCLP using a Gaussian source model

with time-dependent variance (power spectral density) has

been proposed for parameter estimation [6]. Their solution

involves sequential estimation of the desired signal PSD and

the prediction coefficients in an iterative manner. However, in

the absence of prior knowledge, the sequential ML estimation

with reverberant speech based initialization can result in non-

monotonic improvement in the desired signal estimation [6].

Several extensions have been proposed [8]–[11] to improve

the desired signal estimation and its PSD. In [7], a smoothed

spectral envelope derived from time domain linear prediction is

proposed as the PSD estimate, and a Gaussian mixture model

based log-spectral prior has been proposed in [8]. As further

improvement, the spectro-temporal variation of speech PSD

is incorporated using a low-rank decomposition approach in

[11]. In [9], a prior estimate based on a complex-generalized

Gaussian is proposed to model the heavy-tail distribution of

speech STFT. All the above extensions have explored linear

estimators and also the time-varying nature of speech PSD.

In this paper, we propose a non-linear constraint for the PSD

estimation using an auto-encoder (AE) deep neural network

(DNN). The auto-encoder is trained on clean speech log-

magnitude STFT coefficients to give a smoothed PSD at

the output. In each MCLP iteration, the estimate for desired

signal PSD is obtained as the output of the clean speech AE-

DNN model for the prediction residual input, which can be

interpreted as a non-linear projection of the prediction residual

PSD onto the space of valid speech spectra. This approach

utilizes the benefit of both MCLP and DNN, unlike the

traditional DNN de-noising auto encoder, where the network is

trained to predict the log magnitude spectrum of clean speech

[13] or a ratio mask [14] from the reverberant speech. The

proposed method also differs from the online WPE method in

[15], where in, a DNN is trained to predict directly the PSD of

early component from the reverberant signal STFT. Instead, we

use a AE-DNN as a constraint to the traditional WPE method

to estimate the residue PSD and hence the MCLP filter. The

DNNs trained on reverb speech have limited generalizability

to un-seen acoustic environments and the source-microphone

placements, unlike our approach of an auto encoder of clean

speech PSD. We examine two DNN architectures, using (i)

FC, and (ii) LSTM layers. The experimental results show

that, MCLP followed by DNN constrained PSD estimation

performs better than earlier methods and also the LSTM

architecture performs better than the FC auto encoder scheme.

II. MULTI-CHANNEL LINEAR PREDICTION

Consider an M -channel recording setup of a source signal

s[t] inside a reverberant enclosure. Let xm[n, k] denote the

short-time Fourier transform (STFT) representation of the mth

microphone signal xm[t], where n, k denote the discrete time

and frequency bin indices respectively. In MCLP, the signal at

the reference microphone (r = 1) is modeled as,

x1[n, k] =

M
∑

m=1

L−1
∑

l=0

g∗m[l, k]xm[n−D − l, k] + d1[n, k], (1)
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where the predicting first term on the right hand side com-

pensates for the late reflection component, and the prediction

residual d1[n, k] is retained as the desired early reflection com-

ponent. The delay parameter D controls the chosen boundary

between the early and late reflection components of the room

impulse response (RIR). In vector form, we can write the

MCLP as,

x1[n, k] = gH [k]φD[n, k] + d1[n, k], (2)

where gm[k] = [gm[0, k] . . . gm[L− 1, k]]
T

, g[k] =
[

gT
1 [k] . . .g

T
M [k]

]T
is the vector of prediction coefficients, and

φD[n, k] = [x1[n−D, k] . . . x1[n−D − L+ 1, k]

. . . xM [n−D, k] . . . xM [n−D − L+ 1, k]]
T
, (3)

is the stacked vector of prediction STFT samples of all the

microphones. Given the STFT of N frames of all the mic

signals {xm[n, k], 0 ≤ n ≤ N − 1, ∀m, k}, the goal is to

estimate the desired signal {d1[n, k], ∀ n, k} at the reference

microphone r = 1. The prediction coefficients vector g[k]
is estimated first using a model for the desired signal, and

then the desired signal is obtained as the residual of MCLP:

d̂1[n, k] = x1[n, k]− ĝH [k]φD[n, k].

A. Weighted prediction error (WPE) minimization

A time-varying complex Gaussian source model (TVGSM)

is proposed in [7], [6] for the STFT coefficients of the desired

signal,

d1[n, k] ∼ Nc (0, γnk) , (4)

where γnk is the time dependent variance, which accounts

for the changing acoustic, phonetic and prosodic content of

speech. The STFT coefficients across time and frequency

are considered independent for a first approximation, and

maximum likelihood criterion is used for the estimation of

prediction coefficients. From eqns. (2), (4), the negative log-

likelihood L(g,γ) can be written as,

L(g,γ) =

K/2
∑

k=0

N−1
∑

n=0

log γnk

+

K/2
∑

k=0

N−1
∑

n=0

(1/γnk)
∣

∣x1[n, k]− g[k]HφD[n, k]
∣

∣

2
. (5)

The parameters {g[k]} and γ are estimated alternately in an

iterative manner. Minimization of L(g,γ(i)) at iteration i +
1 requires solving a weighted prediction error minimization

problem for each k, whose solution can be obtained as [6]

g(i+1)[k] = R−1
φφ [k]rxφ[k], (6)

where,

Rφφ[k] =

N−1
∑

n=0

(

1/γ
(i)
nk

)

φD[n, k]φH
D [n, k], and (7)

rxφ[k] =

N−1
∑

n=0

(

1/γ
(i)
nk

)

x∗
1[n, k]φD[n, k].

The estimate of γ is obtained by minimizing L(g(i+1),γ),
whose solution is,

γ
(i+1)
nk =

∣

∣

∣
x1[n, k]− g(i+1)H [k]φ[n−D, k]

∣

∣

∣

2

, ∀ n, k. (8)

The initial value γ
(0)
nk = |x1[n, k]|2 is chosen based on the

reverberant signal itself, and the variance estimate in (8) is

based on a single sample of STFT. With no prior knowledge

about the speech signal statistics, this choice may lead to

unstable estimates of γnk inconsistent with smooth spectro-

temporal variations of speech, resulting in a poorer residue

signal estimate [7].

III. AUTO-ENCODER PSD CONSTRAINT

Estimation of desired signal PSD, consistent with smooth

spectro-temporal properties of speech can benefit the desired

signal estimation. An auto-encoder is a “parameterized” func-

tion mapping f(.|Φ) (defined by the network) representing

an approximate identity mapping of the input vector d to the

output of the network f(d|Φ), i.e.,

f(d|Φ) ≈ d. (9)

The parameters of the network function Φ are computed a-

priori using minimum squared error criterion

f∗(.|Φ) = argmin
f(.|Φ)

∑

d∈D

‖d− f(d|Φ)‖22 . (10)

The network configuration is chosen with a hidden bottle-neck

layer, to avoid learning the trivial identity mapping between

the input and output. The hidden layer output often gives

a compact representation, and the network output would be

a smoothed version of the input, consistent with the signal

properties. Thus the auto-encoder trained on log-magnitude

STFT of clean speech can be interpreted as the estimator of

the PSD of clean speech.

Spectrogram: {d[n, k]}

Take log-magnitude and normalize

df [n] = (10 log10 |d[n]|2 − µ) ⊙ σ
−1

Un-do normalization and

exponentiate 10
−

(

σ⊙d̂f [n]+µ

)

/10

{γ̂nk}

{d[n]}

FC / LSTM (512)

FC / LSTM (h)

FC / LSTM (512)

FC / LSTM (257)

{df [n]}

{d̂f [n]}

Fig. 1. DNN auto-encoder for PSD vector non-linear estimation and variance
estimation of desired residual signal.
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Fig. 1 shows a block diagram of the proposed scheme to es-

timate {γnk} within the iterations of the MCLP algorithm. The

smoothed estimate d̂1[n, k] at iteration i is passed through the

AE-DNN. We formulate it as log-magnitude and normalized

vector input to the DNN and then output is correspondingly

inverted to get {γ̂nk}.

X
Compute

prediction

filter: {ĝ[k]}

Compute

{d[n, k]}

Compute

{γ̂nk} = f({d[n, k]})

{d[n, k]}

∀ k

Fig. 2. DNN Constrained WPE-MCLP

A block diagram description of the MCLP algorithm with

the proposed DNN PSD constraint is shown in Fig. 2. The ref-

erence microphone signal x1[n, k] is taken as the initialization

for the first iteration and then estimates for γnk are computed

using the pre-trained AE. The estimated {γnk} are used as

weights to recompute the prediction filters for each frequency

bin k, which are then used to compute the residual signal

d̂[n, k]. This estimate is then used to compute the desired

signal PSD through the DNN and the procedure is repeated

for a pre-fixed number of iterations.

Auto-encoder: We consider two architectures for the net-

work function, (i) feed-forward network with fully connected

(FC) layers, and (ii) recurrent network with LSTM layers. Both

networks comprise of three hidden layers apart from the input

and output layers, as shown in Fig. 1. Linear activation is used

at the output layer of the network, and exponential linear unit

(eLU) [16] activation is used for the hidden layers. For the

LSTM units, eLU activation is used only for the output gate

and a tanh activation is used for the forget gates. The number

of hidden units is fixed as 512 for the first and the third hidden

layer, and we experiment with different number of units (h)
for the bottle-neck layer (second hidden layer). For the FC

architecture, we consider input frame expansion with a context

of ±2, i.e., the current frame and two previous and two future

frames are used as the input. No such input context is provided

for the LSTM architecture, since the network encodes context

through the memory states of hidden units. Note that the frame

prediction at the output is independent across time for the

FC network and constrained to be temporally smooth due to

the recurrent connections at the output layer for LSTM. The

two networks FC and LSTM are a-priori trained in the same

manner. AdaDelta optimizer [17] is used for the optimization

using the initial learning rate of 0.01 and number of training

epochs as 100. Keras deep learning framework [18] is used to

implement the auto-encoder network.

IV. EXPERIMENTS AND RESULTS

Auto-encoder: Clean speech sentences from ‘dr1’ set of

TIMIT database are used for training the AE. The dataset

consists of speech sentences from 38 speakers, each speaking

10 sentences; 7 sentences from each speaker are used for

training, 1 sentence each for validation and 2 sentences each

for testing. The total number of training sentences is 266, each

of length about 3 sec. Since, the test set is also drawn from

the same set of training speakers, to verify the generalizability

of the trained DNN, we also tested using sentences from

‘dr2’ set of the TIMIT database, which contains a total of

760 utterances (10 each from 76 speakers). The performance

of the auto-encoder is studied using the average log-spectral

difference measure defined as,

LSD =
1

NK

N−1
∑

n=0

K/2
∑

k=0

∣

∣

∣

∣

10 log10
|d[n, k]|2

γ̂nk

∣

∣

∣

∣

, (11)

where |d[n, k]| and |γ̂nk| denote the magnitude STFT repre-

sentations at the input and output of the auto-encoder network.

Reverberation and MCLP: RIRs from the REVERB2014

challenge [19] dataset are used to generate the reverberant

signals from the clean speech. The dataset consists of RIRs

collected using an 8 channel uniform circular array (UCA),

in three different rooms (RT60={0.25s, 0.6s, 0.73s}), at two

different distances (near = 0.5 m, far = 2.0 m) and at

two different angles (A = +45o, B = −45o) with respect

to a reference microphone. The STFT analysis is carried out

using 32 ms window and 75% successive overlap and the

delay parameter D is chosen as 2 frames. We consider a four

microphone (alternate microphones in the UCA) sub-array,

RIRs from {room=2, distance=’far’, angle=’A’} condition and

the MCLP order L = 16 for all the experiments, unless

otherwise stated. Maximum number of iterations of MCLP is

chosen to be 5. The signal estimation performance is measured

using average frequency weighted SNR (FwSNR), and the

perceptual measures of PESQ [20] and short-time objective

intelligibility (STOI) [21], [22]. The performance measures

are computed using clean speech signal as the reference.

We compare the performance of proposed approach with the

WPE [6], CGG [9] methods and also using a time-domain

auto regressive (AR) model based smooth PSD estimator

(prediction order 21) [8]. Speech examples with spectrogram

illustrations are available online1.
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(a)
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Fig. 3. AE (a) and MCLP (b) performance as a function of the number of
units in the bottleneck layer.

1www.ece.iisc.ernet.in/∼sraj/lstmMCLP.html
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Hidden units: Fig. 3(a) shows that the performance of

DNNs are equally good for both ‘dr1’ and ‘dr2’ data. The auto-

encoder performance as a function of the number of units (h)
in the bottleneck layer shows that LSD measure does decrease

with increasing h as expected, since increasing h increases the

capacity of the network. The DNN based constraint through

the MCLP iterations does show an interesting effect on the

enhanced signal performance. Fig. 3(b) shows the FwSNR

as a function of the number of hidden units h. Increasing

the number of units in the bottleneck layer decreases the

effectiveness of the auto-encoder as a smoothing function and

hence less effective as a constraint in the iterative MCLP

solution. We see that the performance is better for h ≈ 32−80
and does degrade for further increase. However, LSTM is

found to perform better compared to the FC architecture for

most of h values. Thus, we keep to a neural network with

h = 48 units in the bottle-neck layer for further evaluation.
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Fig. 4. FwSNR performance (a) as a function of the number of the iterations,
and (b) for different number of microphones.

MCLP iterations: We next examine the performance as a

function of the number of iterations of MCLP, shown in Fig.

4(a). The performance increases monotonically for the first five

iterations and is found to be almost monotonic and distinctly

better FwSNR for the DNN constrained MCLP cases. For

the other three schemes compared, their FwSNR is a few dB

lower than the two DNN based schemes. Also FwSNR is not

monotonic and it is better to terminate around 5−6 iterations.

The performance in the first iteration, for which the reverberant

signal is the initialization is better with the smooth PSD

estimate based approaches of LSTM, FC and AR methods.

This better initialization, further results in better desired signal

estimation in the next iterations resulting in improved overall

performance for the LSTM and FC approaches. Compared

to FC architecture, LSTM is found to be better due to the

temporal correlations exploited by the LSTM. We found the

performance of CGG to be sensitive to the choice of the delay

parameter D. For D = 2 chosen in this investigation, CGG

performance is poorer compared to WPE.

Microphones: The signal estimation performance for dif-

ferent number of microphones is shown in Fig. 4(b). The

MCLP order is chosen as L = {48, 32, 16, 8} for M =
{1, 2, 4, 8} respectively, a higher order LP for smaller number

of microphones M . Average FwSNR improves significantly

for M > 1 compared to a single microphone scenario. The

performance is found to increase for M = 4 compared to

M = 2. However, M = 8 has similar performance compared

to M = 4. Increasing the number of microphones may also

lead to degradation in the average performance, since over-

parameterization may lead to over-estimation of late reflection

component and hence causing signal distortion.

Room impulse response (RIR): Next, we study the perfor-

mance for different acoustic conditions. Table I shows the

performance comparison for three rooms (different RT60 val-

ues), and two source distances (different direct to reverberation

ratio). We see that, both the original WPE method and the

CGG method perform poorer compared to the MCLP-AR and

MCLP-DNN methods. Performance of MCLP-AR is found

to be better than WPE and CGG, but poorer compared to

the DNN based methods. The AR method estimates a smooth

spectral envelope; however, for the low order prediction used

traditionally, the estimated envelope does not capture the

harmonic information. The DNNs are better able to constrain

the PSD, different from the spectral envelope and hence

preserve the harmonic spectral details, resulting in better signal

estimation. Among the two DNN schemes, LSTM is found to

be better than FC network for the different reverb examples.

LSTM predicts a temporally smooth PSD compared to FC,

resulting in better PSD estimation leading to better perceptual

measures of PESQ and STOI in all acoustic conditions.

TABLE I
LATE REVERB SUPPRESSION PERFORMANCE IN DIFFERENT ENCLOSURES.

FwSNR (dB) PESQ STOI

Room 1
RT60=250ms

Reverb 9.947 1.852 0.833
LSTM 11.925 3.294 0.927

FC 11.967 3.264 0.922
AR 11.512 3.110 0.908

CGG 10.742 2.865 0.890
WPE 11.342 2.854 0.900

Room 3
RT60=730ms

Reverb 4.471 1.277 0.722
LSTM 11.386 2.971 0.924

FC 11.361 2.901 0.919
AR 11.149 2.789 0.908

CGG 9.663 2.539 0.887
WPE 9.552 2.285 0.897

Room 2 (Far)
RT60=600ms

Reverb 5.043 1.306 0.770
LSTM 12.505 2.981 0.924

FC 12.337 2.912 0.920
AR 11.781 2.809 0.906

CGG 10.472 2.560 0.892
WPE 10.755 2.344 0.907

Room 2 (Near)
RT60=600ms

Reverb 10.276 2.047 0.956
LSTM 14.634 3.752 0.964

FC 14.423 3.683 0.959
AR 13.503 3.529 0.947

CGG 12.918 3.262 0.929
WPE 13.918 3.383 0.966

V. CONCLUSIONS

The non-linear predictive power of DNNs is shown to be

useful to improve the performance of multi-channel rever-

berant signal enhancement. This is possible in conjunction

with the iterative stochastic model based MCLP enhancement

scheme. Choice of LSTM for AE-DNN and a moderate

number of mic signals is found to be sufficient to achieve 2−3
dB improvement in FwSNR over the traditional methods. The

success of LSTM indicates the importance of both temporal

and spectral constraints in the stochastic estimation of MCLP.
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