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Abstract—Eigenbeam ESPRIT (EB-ESPRIT) is a subspace
based method to estimate directions-of-arrival (DOAs) of sound
sources from a spherical microphone array recording in the
spherical harmonics domain (SHD). In recent works, nonsingular
EB-ESPRIT methods have been proposed which can estimate
the source DOA-vectors without ambiguities. In another recent
publication, a subspace based pseudointensity-vector method (SS-
PIV) has been proposed for DOA estimation. In this work, we
derive the mathematical relation between the DOA-vector EB-
ESPRIT and the SS-PIV method. We show that the SS-PIV can be
seen as a special case of the DOA-vector EB-ESPRIT. Using this
relation, we propose a novel DOA-estimator denoted as extended
pseudointensity-vector (PIV). In the evaluation, we compare the
DOA-vector EB-ESPRIT and the extended PIV with the SS-PIV
and PIV under noisy and reverberant conditions.

Index Terms—Direction-of-arrival estimation, eigenbeam ES-
PRIT, subspace pseudointensity-vector

I. INTRODUCTION

The direction-of-arrival (DOA) of a sound source cap-
tured with a microphone array is an important parameter
for informed microphone array processing and acoustic scene
analysis.

A commonly used approach is to estimate the DOA from the
cross-correlations of different microphone signals [1]. If both
sound-pressure and particle-velocity can be measured, one can
estimate the source DOA from the sound-intensity vector [2]
which, in case of a plane-wave source, is proportional to
minus the DOA-vector [3]. Unwanted noise and reverberation
can degrade the performance of DOA estimators. Therefore,
subspace based methods such as multiple signal classification
(MUSIC) [4] and estimation of signal parameters via rotational
invariance technique (ESPRIT) [5] have been developed to
reduce the effect of noise on the DOA estimation.

DOA estimation algorithms typically depend on the spe-
cific microphone array geometry. For 3D scenarios, spherical
microphone arrays can be used which enable to efficiently
represent the recorded sound-field in the spherical harmonics
domain (SHD) [6]. In the SHD, the pseudointensity-vector
(PIV) [7], [8] can be used to estimate the source DOA
using SHD coefficients up to the first order. Another method
splits a B-format signal into real and imaginary parts to
estimate two DOAs per time and frequency [9], [10]. The
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mentioned subspace based methods can also be formulated
in the SHD, yielding EB-MUSIC [11] and EB-ESPRIT [12].
In recent works [13]–[16], the problems of the original EB-
ESPRIT [12] have been resolved. In [16], [17], the DOA-
vectors are estimated by jointly combining three EB-ESPRIT
type equations.

Recently, a subspace version of the PIV (SS-PIV) [18] was
proposed. However, although higher order SHD coefficients
are used to construct the signal subspace, only the zeroth-
and first-order coefficients of the signal subspace are used.
In contrary, EB-ESPRIT incorporates higher-order coefficients
of the signal subspace. Although EB-ESPRIT and SS-PIV are
subspace based DOA-estimation methods, the relation between
these two approaches has not yet been described.

In this work, we derive the mathematical relation be-
tween the DOA-vector EB-ESPRIT [16], [17] and the SS-
PIV method [18]. We find, that the DOA-vector EB-ESPRIT
reduces to the SS-PIV if only one source is assumed and
if only SHD coefficients up to the first order of the signal
subspace eigenvector are considered. Therefore, the SS-PIV
can be seen as a special case of the DOA-vector EB-ESPRIT.
Using this relation and higher SHD orders of the signal, we
propose a novel DOA-estimator denoted as extended PIV. In
the evaluation, we show that the DOA estimation accuracy of
the DOA-vector EB-ESPRIT and the extended PIV increases
with increasing maximum SHD order.

II. SPHERICAL HARMONICS TRANSFORMATION

Let X1, ..., XP denote microphone signals recorded with a
spherical microphone array with P microphones and radius
r. The spherical coordinates of the microphones are denoted
by (r, θp, φp) ≡ (r,Ωp), where Ωp ∈ {(θ, φ)|θ ∈ [0, π], φ ∈
[−π, π)} are the microphone directions.

The discrete spherical harmonics transform (SHT) of
[X1, ..., Xp] is defined as follows [19], [20]:

Xlm :=
P∑
p=1

qpXpY
∗
lm(Ωp) , (1)

for l = 0, ..., L and m = −l, ..., l, where (·)∗ denotes the
complex conjugate, Ylm(Ω) the spherical harmonic of order l
and mode m [19], [20], L the maximum SHD order and qp
are the sampling weights, which depend on the microphone

2019 27th European Signal Processing Conference (EUSIPCO)

978-9-0827-9703-9/19/$31.00 ©2019 IEEE



distribution [19], [20]. For uniform spatial sampling, one
yields qp = 4π

P [21].
For wavenumbers κ < L/r [19] and appropriate sampling

weights, the discrete SHT of a unit amplitude plane-wave XPW
takes the following form [19], [20]:

(XPW)lm ≈ bl(κr)Y ∗lm(ΩPW) , (2)

where ΩPW is the DOA of the plane-wave and bl(kr) the mode-
strength of order l, which depends on the microphone-array
properties only [19], [20]. To compensate for this dependency,
one can divide the SHD coefficients by bl(kr) [22], yielding
mode-strength compensated SHD (MC-SHD) signals.

In the following sections, we use a vector notation for
spherical harmonics y(Ω) = [Y00(Ω), Y1−1(Ω), ..., YLL(Ω)]T

and MC-SHD signals x = [X00, X1−1, ..., XLL]T , where (·)T
denotes the transpose. Without loss of generality, we assume
that all signals have been transformed to the short-time Fourier
transform (STFT) domain before the SHT, where time and
frequency indices are omitted for brevity.

III. DOA-VECTOR EB-ESPRIT

Let x = [X00, X1−1, ..., XLL]T denote the signal vector in
the MC-SHD, including J plane-wave sources and a diffuse
noise component. The power spectral density (PSD) matrix
Φx := E{xxH}, where E{·} denotes the expectation operator
and (·)H the conjugate transpose, can be estimated from x
using temporal and/or spectral averaging. The signal subspace
is the span of the eigenvectors [u1, ...,uJ ] =: Us correspond-
ing to the J largest eigenvalues of Φx. For a non-reverberant
scenario, Us is related to the source DOAs Ω1, ...,ΩJ via

Us = [y∗(Ω1), ...,y∗(ΩJ)]T , (3)

where T is an invertible complex valued J × J matrix [12].
EB-ESPRIT type methods use this relation and recurrence

relations of spherical harmonics to estimate the J source
DOAs. The DOA-vector EB-ESPRIT [16], [17] uses the
following recurrence relations:

cos(θ)Y ∗lm(Ω) =
√

(l−m)(l+m)
(2l−1)(2l+1) Y

∗
(l−1)m(Ω)

+
√

(l+1−m)(l+1+m)
(2l+1)(2l+3) Y ∗(l+1)m(Ω)

sin(θ)e∓iφY ∗lm(Ω) = ±
√

(l−1∓m)(l∓m)
(2l−1)(2l+1) Y ∗(l−1)(m±1)(Ω)

∓
√

(l+1±m)(l+2±m)
(2l+1)(2l+3) Y ∗(l+1)(m±1)(Ω)

(4)

for l = 0, ..., Lmax, |m| ≤ l, Lmax ≤ L − 1 and Ylm(Ω) := 0
if |m| > l. For the comparison with the SS-PIV method, we
vary Lmax from 0 to L− 1.

As discussed in [16], [17], using (3) and (4), one can derive
the following three EB-ESPRIT equations:

(D0Us)Ψz = DzUs and (D0Us)Ψ± = D±Us (5)

with

[Dz(·)]lm =
√

(l−m)(l+m)/(2l−1)(2l+1) [(·)](l−1)m
+
√

(l+1−m)(l+1+m)/(2l+1)(2l+3) [(·)](l+1)m

[D±(·)]lm = ±√(l−1∓m)(l∓m)/(2l−1)(2l+1) [(·)](l−1)(m±1)
∓√(l+1±m)(l+2±m)/(2l+1)(2l+3) [(·)](l+1)(m±1)

D0(·) = [[(·)]00, ..., [(·)]LmaxLmax ]
T (6)

for l = 0, ..., Lmax and |m| ≤ l, where [(·)]lm := 0 if |m| > l
and the J × J matrices

Ψz = T−1diag{cos(θ1), ..., cos(θJ)}T
Ψ± = T−1diag{sin(θ1)e∓iφ1 , ..., sin(θJ)e∓iφJ}T . (7)

Optimal Ψz and Ψ± can be determined from (5) us-
ing the pseudoinverse of D0Us. Estimates of cos(θj) and
sin(θj)e

±iφj for j = 1, ..., J can be derived by jointly
diagonalizing Ψz , Ψ− and Ψ+ [17]. The DOA-vector of the j-
th source nj = [sin(θj) cos(φj), sin(θj) sin(φj), cos(θj)] can
then be estimated using the resulting eigenvalues via [17]

n̂j = Re
{[

1
2 (µj + νj),

1
2i (µj − νj), λj

]T}
(8)

for j = 1, ..., J , where Re{·} denotes the real operator and λj ,
µj , νj the j’th eigenvalues of Ψz , Ψ− and Ψ+, respectively.

IV. SUBSPACE PSEUDOINTENSITY VECTOR

The pseudointensity-vector (PIV) method [7] makes use
of the fact that for a plane-wave source the corresponding
sound intensity-vector points in the direction opposite to the
source DOA. The PIV is an estimate of the intensity-vector
using zeroth- and first-order SHD coefficients of the signal [7].
In [18] a modified PIV m is defined which, for a plane-wave
source, points towards the source DOA as follows:

m :=
4π
√

4π

3
Re

X∗00M
X1−1
X10

X11

 , (9)

where the matrix M is defined as

M :=

Y1−1(Ωx) Y10(Ωx) Y11(Ωx)
Y1−1(Ωy) Y10(Ωy) Y11(Ωy)
Y1−1(Ωz) Y10(Ωz) Y11(Ωz)

 (10)

with Ωx = (π/2, 0), Ωy = (π/2, π/2) and Ωz = (0, 0).
Evaluating the spherical harmonics in M and inserting the
result in (9) one yields:

m :=
4π√

6
Re

X∗00
 1 0 −1
−i 0 −i
0
√

2 0

X1−1
X10

X11

 . (11)

The subspace PIV (SS-PIV) mss is obtained by replacing the
coefficients of x in (11) by the respective coefficients of the
dominant PSD matrix eigenvector us as follows [18]:

mss :=
4π√

6
Re

[us]
∗
00

 1 0 −1
−i 0 −i
0
√

2 0

[us]1−1
[us]10
[us]11

 .

(12)
The source DOA can be estimated from the direction of mss.

2019 27th European Signal Processing Conference (EUSIPCO)



V. RELATION OF DOA-VECTOR EB-ESPRIT TO SS-PIV

To compare the DOA-vector EB-ESPRIT to the SS-PIV,
we assume that there is only one plane-wave source (J = 1)
present in the sound field at DOA Ω = (θ, φ). Note that,
if several plane-wave sources exist, we can still use J = 1
if we assume that only one source is dominant per time-
frequency bin (sparseness assumption). In practice, this is not
always the case, which can yield wrong DOA estimates at
time-frequency bins where more than one source is active.
Using the sparseness assumption, (5) simplifies to

(D0us)Ψz = Dzus and (D0us)Ψ± = D±us (13)

with D0, Dz and D± defined in (6). The complex scalars Ψz ,
Ψ− and Ψ+ correspond to cos(θ), sin(θ)eiφ and sin(θ)e−iφ,
respectively. The least squares solutions are given by:

Ψz =
(D0us)

HDzus
‖(D0us)‖2

and Ψ± =
(D0us)

HD±us
‖(D0us)‖2

.

(14)

The DOA-vector n̂ can be estimated from Ψz and Ψ± analo-
gously to (8):

n̂ = Re


 1

2 (Ψ− + Ψ+)
1
2i (Ψ− −Ψ+)

Ψz


=

1

‖(D0us)‖2
Re


(D0us)

HDxus
(D0us)

HDyus
(D0us)

HDzus

 , (15)

where we defined:

Dx := 1
2 (D− + D+) and Dy := 1

2i (D− −D+) . (16)

Let us now examine the special case Lmax = 0. Evalua-
ting (6) for (l,m) = (0, 0), we find:

(D0us)
Lmax=0−−−−→ [us]00 , (Dzus)

Lmax=0−−−−→ 1√
3
[us]10 ,

(Dxus)
Lmax=0−−−−→ 1√

6
([us]1−1 − [us]11) and

(Dyus)
Lmax=0−−−−→ 1

i
√
6
([us]1−1 + [us]11) . (17)

Substituting (17) in (15), one yields the following expression
of the DOA-vector estimated using the DOA-vector EB-
ESPRIT for J = 1 and Lmax = 0:

n̂ =
1√

6|[us]00|2
Re

[us]
∗
00

 1 0 −1
−i 0 −i
0
√

2 0

[us]1−1
[us]10
[us]11

 .

(18)
Comparing (18) to (12), one can see that the expressions coin-
cide up to a different normalization factor, which, however, is
not relevant for the DOA estimation. Hence, the DOA-vector
EB-ESPRIT reduces to the SS-PIV method for J = 1 and
Lmax = 0. For Lmax > 0, the DOA-vector EB-ESPRIT can be
seen as an extension of the SS-PIV incorporating higher order
coefficients of us.

VI. EXTENDED PIV
As discussed in Sec. IV, the SS-PIV is derived from the

PIV, defined in (11), by replacing the coefficients of the MC-
SHD signal x by the respective coefficients of the signal
subspace eigenvector us. Viewing (15) as an extension of the
SS-PIV, one can analogously derive an extension of the PIV
by replacing us in (15) with x. Choosing a normalization
compatible with (11), one can therefore define an extended
PIV, including higher-order SHD coefficients of x, as follows:

mext := 4π Re


(D0x)HDxx

(D0x)HDyx
(D0x)HDzx

 . (19)

As no PSD matrix estimation and eigen-decomposition is
needed, this method has a lower computational complexity
and, therefore, is more suitable for real-time implementations.

In the following section, we compare the proposed extended
PIV and the DOA-vector EB-ESPRIT to the PIV and SS-PIV
methods for different L and Lmax.

VII. EVALUATION

A. Setup

To compare the discussed DOA estimation methods, scenar-
ios with one plane-wave source, diffuse noise and reverbera-
tion were simulated. Four speech signals, each 4 seconds long
and sampled at 16 kHz, and 24 DOAs, uniformly distributed
over the sphere, yielding 4 × 24 = 96 configurations. The
speech signals were taken from [23].

For the non-reverberant scenario, the source signals were
first transformed to the STFT domain and then multiplied
with y∗(Ω), where Ω denotes the DOA. For the reverberant
scenario, a virtual rigid spherical microphone array with 32
almost uniformly distributed microphones and a radius of 7 cm
was placed at [4.103 m, 3.471 m, 2.912 m] in a virtual 8×7×6
m3 shoebox room. The sources were placed at a distance
of 2 m from the array center and the spherical microphone
array impulse responses (SMIRs) were generated with [24],
which is based on the image method [25]. Reverberation
times T60 of 0.3 s and 0.6 s were used. The source signals
were convolved with the SMIRs in the time domain, then
transformed to the STFT domain and finally transformed
to the MC-SHD using (1) and a regularized mode-strength
compensation Xlm(k)→ [b∗l (kr)/(|bl(kr)|2 +10−6)]Xlm(k).

Diffuse stationary noise with an adjustable input signal plus
reverberation-to-noise ratio of

iSNR = 10 log10(σ2
s/σ

2
v) dB (20)

was added, where σ2
v denotes the noise variance and σ2

s is the
mean energy of the noiseless signal, excluding time-frames
with energies less than 1% of the maximum frame-energy.

For the STFT, a square-root-Hann window of 128 samples
(8 ms) length, a hopsize of 64 samples (4 ms) and a DFT
size of 256 was chosen. For the MC-SHD the maximum SHD
order was set to L = 3.

The PSD matrix Φx was estimated per time-frame and
frequency bin within the range [100, 2313] Hz by averaging
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Fig. 1. Mean angular estimation errors. Left: different reverberation and iSNR = 6 dB. Right: different iSNR and no reverberation.

xxH over 25 time-frames (100 ms) centred around the cur-
rent frame. For the evaluation, angular distances d∠ of the
estimated DOA-vectors/PIVs w.r.t. the true DOA-vector were
calculated using:

d∠(v1,v2) := acos
(
vT1 v2/(‖v1‖‖v2‖)

)
, (21)

where v1, v2 are two real vectors and acos(·) denotes the
inverse cosine. As the DOA estimation at time-frequency
indices where only noise is present is expected to yield random
results, we neglect time-frequency indices where the signal
plus reverberant energy is smaller then -30 dB of the maximum
energy for the computation of the mean angular errors in our
evaluation. Hence, only the time-frequency indices with

|Srev
00 (m, k)|2 > 10−3 ·max

m,k
|Srev

00 (m, k)|2 (22)

are considered, where (m, k) denotes the time-frequency index
and Srev

00 (m, k) the omnidirectional component of the rever-
berant signal without noise. The instantaneous signal plus
reverberation-to-noise ratios (SNRs) for Fig. 3 are computed
as follows:

SNRinst.(m, k) = 10 log
(
4π|Srev

00 (m, k)|2/σ2
v

)
. (23)

The distributions of the angular errors over instantaneous SNR
are derived by averaging all angular errors at the analysed
time-frequency bins within 1 dB intervals of the corresponding
instantaneous SNRs.

B. Results

In Fig. 1, the mean angular errors for the different DOA
estimators are shown for different T60 and iSNR. The results
were averaged over the 96 configurations, where the standard
deviation is represented with red errorbars in Fig. 1. One
can see, that the inclusion of higher order SHD coefficients
increases the estimation accuracy of both the PIV and the
SS-PIV. In particular, even the extension of PIV and SS-PIV
by one order (Lmax = 1), significantly improves the DOA
estimation. The standard deviations of the subspace based
methods are small for the non-reverberant case, suggesting
that the estimation accuracy of these methods does not depend
on the specific source signal or DOA unless reverberation
is introduced. For the considered maximum SHD order, the
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Fig. 2. Angular errors for source at [98°, 4.2°], T60 = 0.3 s, iSNR = 6 dB.
a) Spectrogram of clean speech, b) PIV, c) Extended PIV with Lmax = 2,
d) SS-PIV, e) DOA-vector EB-ESPRIT with Lmax = 2.

subspace methods are significantly more accurate than the
other methods.

In Fig. 2, spectrograms of the angular errors are shown.
One can see, that the DOA estimation accuracy scales with
the source signal energy, shown in Fig. 2 a), at the respective
time-frequency bins. The subspace methods yield low esti-
mation errors even at time-frequency bins where the source
signal energy is low. Moreover, the extended PIV yields less
estimation errors than the PIV at time-frequency bins where
the source is less dominant and analogously for the DOA-
vector EB-ESPRIT w.r.t. the SS-PIV.

In Fig. 3, the distributions of the angular errors over instan-
taneous SNRs are shown. The results were averaged over all 96
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configurations. For low instantaneous SNRs, the non-subspace
based methods yield mean angular estimation errors around
90°, which is expected as the mean angular estimation error
of a random estimate is 90°. For instantaneous SNRs greater
than -10 dB the angular errors decrease. For instantaneous
SNRs greater than 20 dB the extended PIV methods have
lower estimation errors than the SS-PIV method. The subspace
based methods yield estimation errors smaller than 90° even
at low instantaneous SNRs. The accuracy increases until ∼
10 dB and remains constant for higher instantaneous SNRs,
suggesting that the noise has negligible influence on the signal
subspace for SNRs > 10 dB.

VIII. CONCLUSION

We showed that the DOA-vector EB-ESPRIT [16], [17] re-
duces to the SS-PIV method [18] when only one source DOA
is estimated and the recurrence formulas involved are only
used up to Lmax = 0. Using this relation between the DOA-
vector EB-ESPRIT and the SS-PIV as well as the relation
between the PIV and the SS-PIV, we defined an extended
PIV (19) which incorporates higher-order SHD coefficients
of the signal vector. In the evaluation, we showed that the
extended PIV and DOA-vector EB-ESPRIT can estimate the
source DOA with higher accuracy than the PIV and SS-PIV,
respectively, and the accuracy increases with increasing Lmax.
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