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Abstract—Outlier detection is usually based on smooth as-
sumption of the data. Most existing approaches for outlier
detection from spatial sensor data assume the data to be a smooth
function of the location. Spatial discontinuities in the data, such
as arising from shadows in photovoltaic (PV) systems, may
cause outlier detection methods based on the spatial smoothness
assumption to fail. In this paper, we propose novel approaches
for outlier detection of non-smooth spatial data. The methods
are evaluated by numerical experiments involving PV panel
measurements as well as synthetic data.

Index Terms—outlier detection, spatial signals

I. INTRODUCTION

We consider datasets that are constituted by data points
associated with particular spatial locations. Such datasets arise
in various important applications including numerical weather
prediction, economics, power grids and wireless sensor net-
works. Typically, spatial data is assumed to conform with
the geometry of the spatial domain. Outlier detection from a
dataset is an important data analysis task - to detect interesting
events or hint at faulty devices. The basic idea underlying most
outlier detection methods is to compare each data point with
an expected or anticipated value due to some signal model. A
large deviation of a data point from its expected value indicates
that the data is an outlier. For spatial data, a widely used signal
model is smoothness in the sense of requiring similar values
for data points at close-by locations.

However, in some applications the generated data exhibits
intrinsic discontinuities. For such non-smooth spatial data,
existing methods relying on smoothness are ill-suited. We
are using photovoltaic (PV) panel monitoring as an actual
example case for spatial outlier detection. The measurement
system is illustrated in Figure 1(a). Each PV panel is equipped
with a sensor measuring the electrical power generated by
the panel. As the location of each panel is different and
known, the dataset produced by the sensors becomes a spatial
dataset illustrated in Figure 1(b). The target of the monitoring
is to identify malfunctioning PV panels - i.e. panels whose
power is smaller than predicted. The problem can then be
seen as an outlier detection from spatial dataset. The spatial
dataset collected from the sensor network is usually smooth
in spatial domain, because the adjacent PV panels are equally
illuminated. However, shadows of nearby objects may cause
part of the panels to be in shadow while others are in direct
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sunlight. Our research question is then, how can we construct
a good outlier detector for a non-smooth spatial signal.

In this paper, we compare different approaches for the
problem of spatial outlier detection in the presence of dis-
continuities. Our contributions in this paper are comparisons
of different methods for this problem. According to our
knowledge, this is the first attempt to treat spatial outlier
detection as label propagation problem.
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Fig. 1. PV panel monitoring as an example of outlier detection problem from
a dataset: (a) PV panels, part of which are shadowed; (b) panel-level power
measurements making a spatial dataset.
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II. PROBLEM SETTING

Our data set consists of power measurement values of
several PV panels. The panels have known spatial locations
in a regular rectangular grid as illustrated in Figure 1(b). So,
our data set consists of spatial data points (nodes) denoted as
V ={1,2,...,n}. The attribute x; is a mapping from ¥V — R
representing the attribute value of node i, in the PV monitoring
case the power measurement at panel i.

Our target is to detect outlier nodes from the spatial data set.
However, since our data set consists of normal data without
outliers, we cannot use it directly for development of outlier
detection algorithms. Instead, we use a common approach
in outlier detection [1] and convert the outlier detection
problem into prediction problem: we use the data points in the
neighborhood of our target node, {j|j € N (i)}, to construct
a predictor for the attribute of our target node, denoted as
g(N(3)). Since the actual measurement of the target node is
known, we can compare the actual value, x; to the predicted
value, g(N(7)). A large difference between the predicted and
actual measurement values indicates an outlier. As in [2], we
can define an outlier score indicating the degree of outlierness,
o(i), for node i as

o(i) = [xi — g(N (1)) (D

The spatial smoothness assumption is valid in the PV
measurement data if all the nodes are in direct sunlight or
in full shadow. However, the assumption fails in the partially
shadowed situation illustrated in Figure 4. We express the
shadowed/non-shadowed status of each node by assigning
label, y;, for each node: y; = —1 indicates a shadowed node
and y; = +1 indicates a non-shadowed node.

The neighborhood relationships of the nodes can be repre-
sented with an undirected weighted data graph, G = (V, &),
where V is the set of nodes of the graph and £ is the set
of edges between vertices. Here nodes are the data points
and edges represent the similarity of data points. We define
the edge weights via a thresholded Gaussian kernel weighting
function as in [3],

(’”i_’”j)Z

T if z; € N(4) )
0 otherwise

Here 6 is a constant and N (i) consists of four or eight
closest neighbors of the data point as illustrated in Figure 2
and in Figure 3.

III. PROPOSED METHODS

Our aim is to find a good predictor, g(N(¢)), in the
presence of edge-like spatial discontinuities in the data. We
compare three different approaches. Our baseline approach is
a maximum likelihood predictor, which is based on signal
smoothness assumption the neighborhood and thus ignores
the existence of discontinuities. Secondly, we apply methods
from image processing based on explicitly detecting disconti-
nuities, referred as edge detection, or implicitly taking them

into account with median-based filter [4]. Thirdly, we try to
solve the situation of shadowed/non-shadowed nodes over all
the whole spatial area by using graph-based semi-supervised
learning methods [5].

A. Maximum likelihood predictor

Spatial smoothness of the signal means that the signal is
locally constant in the neighborhood, N (7)U{i}. We can model
each x; as an independent and identically distributed random
variable, which is a sum of constant value, i, and zero-mean
Gaussian distributed noise, € ~ N(0,02). So, the probability
density function for each z; is,
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In order to get an estimate for p, we can construct the log-
likelihood function as
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Calculating 5~ 9 JogL (i, o;x) = 0 then gives the maximum
likelihood estimate for p, which is also the maximum likeli-
hood predictor of x;, which is the sample mean
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We can select N (i) to be e.g. the 4-point spatial neighbor-
hood illustrated in Figure 2 or the 8-point spatial neighborhood
illustrated in Figure 3.

B. Maximum likelihood (ML) predictor with edge detection

If there is a discontinuity present inside the spatial neighbor-
hood, as illustrated in Figure 4, it causes an abrupt change of
the attribute value and the smoothness assumption is no longer
valid. In order to be able to use the smoothness assumption
we need to redefine the spatial neighborhood in such a way
that only data points on the same side of the edge as z; are
included in the neighborhood. E.g. in the case of Figure 4
Nreduced(i) = {]-7 27 3}

For detecting the edge, we use a simple thresholding based
detector described in [6],

+1, m; >thr
= 6
Y { x; < thr ©

and apply (5) into the reduced spatial neighborhood,

Nreduced ) - {.7|.7 € N( ) A Y; = yZ} (7)

Several histogram-based methods for selecting the threshold
are reviewed in [6]. Here we set the threshold halfway between
minimum and maximum values found in the spatial dataset.
From our prior knowledge of PV panels in partially shadowed
conditions [7] we can conclude that this threshold lies between
the power generated by shadowed and unshadowed panels.
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Fig. 3. 8-point spatial neighborhood of x;.

C. Median based predictor

Median filtering has been widely used in image processing
due to its capability to preserve edges in the image. On the
other hand, sample median is known to be more robust than
sample mean [8]. Here we try the following median-based
predictor algorithm.

med(N (i) = median(x;|j € N(i)) (8)

D. Predictors based on semi-supervised learning of disconti-
nuities
A drawback of the methods, which try to detect discon-
tinuities based on the local spatial neighborhood of the data
point, is that with noisy input they tend to give noisy detection
results. Since the edge-like discontinuities are continuous in
some spatial direction, a more reliable interpretation of the
discontinuities in the sensor dataset can potentially be found
by aiming at a global interpretation for the shadow structure
of the data set. To this end, we use semi-supervised learning
algorithms as follows:
1) We select randomly a set of data points and classify
them with the thresholding method in (6).
2) We run a semi-supervised classification algorithm to find
the labels for the rest of the data points. This algorithm
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Fig. 4. 4-point spatial neighborhood of z; with a discontinuity in the
neighborhood.

will find the shadowed and unshadowed areas for the
whole dataset. Thus, we can expect to get a global view
into the shadow situation - which potentially is more
reliable than the local methods.

3) We run predictor (5) with the reduced neighborhood
(7) taking into account the global view into the shadow
situation; i.e. only the data points of the neighborhood
which are similarly shadowed as the target data point
are included in the neighborhood.

We compare two different semi-supervised classification
methods for this purpose: label propagation algorithm [9] and
logistic network Lasso [10].

The known labels, y; for the label propagation algorithm can
be collected into the vector denoted as Y = {y1, ...,y }. The
estimated labels Y = (Y},Y,) where Y; includes the known
labels and Y, denotes the unknown labels. Label propagation
uses affinity matrix, W = [WW;;], constructed from the edge
weights (2) and diagonal degree matrix D = [D;;], where

Dii =Y Wi ©)
J

The labels are found with the following iterative algorithm
[9] which updates the labels in step 5, but forces the known
labels back to the original values in step 6:

Algorithm 1 Label propagation
1: Compute affinity matrix W using (2)

2: Compute the diagonal degree matrix D using (9)
3: Initialize Y (© < (y1, ..., 41,0, ...,0)

4: repeat

5. YD o pTlwy ®

N Yl(tﬂ) Y,

7

8

: until convergence to y (o)
: Label all the points x; by the sign of g§°°>

Logistic network Lasso [10] is a classifier which finds the
values for the unknown labels by regularized empirical risk
minimization

x = argmin(E(x) + Al|z||rv) (10)
x
where the empirical error is defined by
- 1
E(z) = 0 Z log(1 + exp(—y;zi)) (11
Y i€
and the total variation (TV) by

lzllrv = ) Wijlzi — a5 (12)

(i,4)€€

The labels are the achieved as y; = sign(x;).
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IV. EXPERIMENTS

We evaluate the performance of the proposed algorithms
using a synthetic data set and a real-world dataset obtained
from PV monitoring system by SOLA Sense Ltd. We pre-
pared two synthetic dataset consisting of 16-by-16 spatial
samples including edge-like discontinuities in various direc-
tions: one with added Gaussian random noise (’edges+noise’
illustrated in Figure 5) and another with added smooth slope
(Cedges+slope’ illustrated in Figure 6).
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Fig. 5. A synthetic 16-by-16 point dataset ("edges+noise’) used for experi-
ments

Fig. 6. A synthetic 16-by-16 point dataset ("edges+slope’) used for experi-

ments
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Fig. 7. One data frame from the PV data set used for experiments

The PV dataset includes power measurements of a 2-
by-14 PV panel system. The dataset contains output power
measurements from each panel at 10-second intervals over
one day (6000 time instances corresponding to 17 hours of
measurement). The selected day was sunny and the PV system

has nearby objects causing regular shadows falling on the
panels during the day.

Both datasets include only normal data without real outliers.
However, we can use the average outlier score (1) calcu-
lated over the entire dataset to measure the goodness of our
predictors (and thus also the outlier detectors based on the
predictors). An ideal predictor predicts the actual attribute
values perfectly giving an outlier score equal to zero. Thus,
the smaller outlier score we achieve, the better our predictor
is.

V. RESULTS

The outlier scores of different algorithms for the synthetic
test data sets (Cedges+noise’, ’edges+slope’) as well as for the
solar data set are listed in Table I. In order to get an idea of
how the different predictors treat the edges in the spatial data,
we plot the values of g(IN(4)) for the different algorithms for
data set ’edges+slope’ in Figure 8.

TABLE I
AVERAGE OUTLIER SCORE OF DIFFERENT PREDICTION ALGORITHMS IN
4-POINT SPATIAL NEIGHBORHOOD(N4) AND 8-POINT SPATIAL

NEIGHBORHOOD(NS)
Algorithm Synthetic Synthetic PV data
edges+noise | edges+slope
Maximum likelihood(n4) 0.548 0.285 2.386
ML with edge detection(n4) 0.445 0.025 2.104
4-point median(n4) 0.515 0.122 1.701
Label propagation(n4) 0.531 0.034 1.553
Logistic network Lasso(n4) 0.536 0.034 1.513
Maximum likelihood(n8) 0.590 0.392 3.099
ML with edge detection(n8) 0.431 0.041 2.790
8-point median(n8) 0.544 0.182 3.737
Label propagation(n8) 0.564 0.055 1.883
Logistic network Lasso(n8) 0.561 0.055 1.811

With synthetic datasets, ML estimator with edge detection
gave the best results. However, with ’edges+noise’ dataset
differences between different methods were small indicating
that reliable edge detection was not possible due to noise. With
"edges+slope’ dataset, maximum likelihood estimator with
edge detection was the winner but semi-supervised learning
based methods (label propagation and logistic network Lasso)
followed closely. With real PV measurement data, the semi-
supervised learning methods performed best. Presumably,
the structure of discontinuities in ’edges+slope’ dataset was
oversimplified, and the semi-supervised methods performed
better because they could utilize the global spatial structure of
discontinuities in the real-life data.

VI. RELATED WORK

Several methods for outlier detection from spatial signals
are reviewed in [1], [11]. Some methods model spatial data as
multidimensional signal [2], other methods use graph signal
processing [12], [13], [14]. However, indentification of edge-
like discontinuities closely resembles image segmentation
which has been studied a lot during the past decades [6].
In [2] a median-based algorithm was used for spatial outlier
detection. [15] resembles our approach by solving outlier
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Fig. 8. Predictor results for the different algorithms: (a) original, (b)
maximum likelihood, (¢) ML with edge detection, (d) 4-point median (e)
label propagation, (f) logistic network Lasso

detection problems with linear regression and regularization.
They use vector-valued data points and also learn the weight
vectors for logistic regression. Using vector dimension equal
to one brings their approach close to our method based on
logistic network Lasso. However, they identify the outliers
directly while our approach uses logistic network Lasso for
identifying discontinuities - which is just an intermediate step
for constructing a predictor to be used in outlier detection.

Detection of partial shadows on PV systems have been
studied in [16], [7], [17], but not for the detection of a single
malfunctioning panel and not with the accuracy of predicting
the power generated by individual panels.

VII. CONCLUSIONS

We compared different outlier detection methods for spatial
data. Taking into account the edge-like discontinuities clearly

improved the outlier detection performance. With PV panel
monitoring data the best result were achieved using semi-
supervised methods aiming at recognizing the global spatial
pattern of discontinuities. In our previous research [18] utiliz-
ing convolutional neural networks for spatio-temporal outlier
detection gave promising results. Our future research aims
at comparing and combining these two approaches: explic-
itly estimating the spatial edge information and learning the
irregular spatio-temporal nature from the data using artificial
neural network based approaches.
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