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Abstract—We previously proposed a lossless image coding
method based on examples search and probability model op-
timization. In this paper, we improve coding efficiency of the
method by introducing an adaptive prediction technique. Specif-
ically, multiple affine predictors are trained pel-by-pel by using
causal neighbor pels, and the predicted values obtained by
those predictors are used for generating the probability model.
Therefore, both non-local information by the examples search and
local information by the adaptive prediction are used together in
the probability modeling. Furthermore, an optimization method
for the number of examples is also proposed in this paper.
Experimental results show that the proposed method achieves
better coding rates than the state-of-the-art lossless coding
schemes.

Index Terms—Lossless coding, Example search, Affine predic-
tion, Probability modeling, Quasi-Newton method

I. INTRODUCTION

Most image coding schemes consist of two stages. One is a
decorrelation stage, and the other is an entropy coding stage. In
this framework, decorrelate signals generated by the first stage,
i.e. prediction residuals or transform coefficients, are expected
to follow a symmetric single-peaked distribution centered
around zero. In predictive coding, the least-square method [1],
or weighted least-square method [2], [3] is often used to design
adaptive predictors in the first stage for reducing entropy. On
the other hand, our previous approach iteratively optimizes
multiple predictors to directly minimize the coding rate of
the resulting prediction residuals [4]. Moreover, Gaussian
process regression in [5] and deep neural networks in [6] are
used respectively instead of linear prediction to generate the
predicted values. In all those cases, probability distributions
used in an entropy coding stage are assumed to be single-
peaked, and modeled in a decorrelated signal domain.

Recently, we developed a new coding scheme that estimates
probability distributions of luma sample values without the
decorrelation stage. In [7], probability distributions of luma
sample values are approximated by a Gaussian mixture model
and coded by a multilevel arithmetic coding technique. Mean
values of the respective Gaussian distributions are estimated
by examples that are collected from a causal neighborhood by

template matching. The shape of the probability distributions
is controlled by parametric functions associated with the relia-
bility of the examples. Some parameters used in the functions
are numerically optimized by the quasi-Newton method to
minimize the coding rate, and then transmitted to the decoder
side as side-information.

A similar approach was seen in [8] from aspects of utilizing
multi-peaked probability distribution. However, peak positions
of probability distributions are estimated by only using mul-
tiple linear predictors. In other words, the method uses only
local information for the probability modeling.

In this paper, we propose utilizing predicted values from the
local area in addition to the examples collected from the non-
local area. Concretely, multiple affine predictors are designed
for each pel, and the predicted values are used together with
the examples for estimating the probability distribution.

II. EXAMPLES SEARCH AND OPTIMIZATION OF
PROBABILITY MODELS

In this section, the lossless image coding method proposed
in [7] is explained as a base method of the proposal.

In the base method, M types of examples, which are ex-
pected to provide non-local information of image signals, are
collected by template matching from the causal neighborhood.
Figure 1 illustrates this examples search process. In this figure,
pk indicates a target pel that is processed k-th in raster scan
order. The search window of the template matching is limited
within a distance of S = 80 pels. A template consists of twelve
pels {pk + ri | i = 1, 2, . . . , 12} located within ‖ri‖1 ≤ 3.
Here, ri is the relative position from pk. The cost function of
template matching is defined as (1).

Jk(q) =[
12∑
i=1

wi ·
(
f(q+ri)−µ(q)−f(pk+ri)+µ(pk)

)2]12
+λd · ‖q− pk‖1, (1)

µ(q) =
12∑
i=1

wi · f(q + ri), (2)
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Fig. 1. Examples search.

wi =
exp(− 1

2‖ri‖
2
1/σ

2
t )∑12

l=1 exp(−
1
2‖rl‖

2
1/σ

2
t )
. (3)

The first term on the right-hand side of (1) means similarity of
textures measured by weighted root mean squared differences.
f(q) is the luma sample value of pel q, µ(q) is a weighted
local mean of the luma sample values and wi is a weighting
factor defined by the Gaussian function with σt = 1.25. The
second term imposes a penalty for the likelihood of selecting
examples near the target pel. A weighting factor of λd =
0.03 is determined based on the experiment reported in [7].
Values of the cost function (1) are calculated for all pels in
the search window. Then, M pels {qk,1, qk,2, . . . , qk,M} that
have smaller cost function values are collected as examples.

After the examples search, probability distributions are
estimated based on the examples. Those are modeled by a
linear combination of Gaussian functions.

Pr(f|Ek, uk) ∝ P (f|Ek, uk) =

M∑
m=1

gk,m(f) + ε, (4)

gk,m(f) = hk,m · wk,m · exp
(
−w2

k,m · (f − fk,m)2
)
, (5)

where Ek means a set of examples {qk,1, qk,2, . . . , qk,M},
fk,m is a luma sample value given by the m-th example qk,m
after compensating its local mean value.

fk,m = f(qk,m)−µ(qk,m)+µ(pk),
(m = 1, 2, . . . ,M). (6)

uk is a feature value defined by neighboring pels’ number
of coded bits, and ε = 2−20 is a positive constant value
added to avoid the probability being zero. Moreover, hk,m and
wk,m are parameters that control the height and width of each
Gaussian as shown in Fig. 2. We consider these parameters
should reflect reliability of the examples and define them as
parametric functions of the matching cost dk,m = Jk(qk,m)
as well as uk.

hk,m = exp(−a1 · dk,m), (7)

wk,m = a0 · exp(−a2 · dk,m) · exp(−a3 · uk). (8)

ffk,m fk,1 fk,M

gk,m( f )

P( f  | Ek , uk)

hk,mȉ wk,m

wk,m
-1

0 255

Fig. 2. Probability distribution model.

According to this model, the probabilities of possible luma
sample values (f = 0, 1, . . . , 255 for 8 bits image) of the target
pel can be calculated by normalization of (4).

Pr(f(pk) |Ek, uk) =
P (f(pk) |Ek, uk)∑255
f=0 P (f |Ek, uk)

. (9)

Thus, the number of coded bits of pk can be estimated by:

L(pk) = − log2 Pr(f(pk) |Ek, uk)

=
1

ln 2

[
ln

( 255∑
f=0

P (f |Ek, uk)

)
− lnP (f(pk)|Ek, uk)

]
. (10)

This estimation can be seen as a consistency of the probability
model. Therefore, the feature value uk is defined as (11) to
feedback the accuracy of the probability model.

uk =

12∑
i=1

wi · L(pk + ri). (11)

In the base method, the shape of a probability distribution
function is determined by four model parameters a0, . . . , a3.
They are numerically optimized to minimize the number of
coded bits in each region Ω of 64 × 64 pels by the quasi-
Newton method, and then sent to the decoder-side with a fixed
length code of 8 bits as side-information [7].

In this paper, the number of examples M , which was fixed
to 64 in the base method, is also optimized in each region of
the same size. The optimization scheme is described in IV-B
and V.

III. INTRODUCTION OF ADAPTIVE PREDICTION

This paper proposes the use of pel-wise adaptive prediction
for capturing local information. Namely, locally obtained
predicted values fk,n (n = 1, . . . , N) are used in addition
to fk,m (m = 1, . . . ,M) for the probability modeling. These
predicted values are calculated by N different affine predictors.
Prediction coefficients bn,l (l = 0, . . . , Ln) of each predictor
are trained pel-by-pel to minimize (12) in a region T shown in
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Fig. 3. In this paper, we set the size of the training region T to
R = 10 based on the results of our preliminary experiments.

en =
∑
pi∈T

1

σ2
n,i

(
f(pi)−

( Ln∑
l=1

bn,l·f(pi+r′n,l)+bn,0
))2

. (12)

Here, Ln is the number of reference pels for the n-th predictor
and bn,0 is a translation term. r′n,l (l = 1, 2, . . . , Ln) means
vectors that define the reference pel arrangement of the re-
spective predictors. σ2

n,i shows the mean squared differences
between reference pels of pk and pi.

σ2
n,i =

1

Ln

Ln∑
l=1

(
f(pk + r′n,l)− f(pi + r′n,l)

)2
. (13)

In practice, the minimum value of σ2
n,i is clipped by 1/64 to

avoid zero division in (12).
While the predicted values are used as fk,n in (5), regression

errors in the training region are also used as dk,n in (7) and
(8). They are calculated by the trained affine predictors.

fk,n =

Ln∑
l=1

bn,l · f(pk + r′n,l) + bn,0, (14)

dk,n =

(
e′n∑

pi∈T 1/σ
2
n,i

) 1
2

, (15)

where, e′n means a minimized prediction error in (12). On the
other hand, the feature value uk can be different values for
each predictor depending on its reference pels arrangement:

uk,n =

Ln∑
i=1

wn,i · L(pk + r′n,i), (16)

wn,i =
exp(− 1

2‖rn,i‖
2
1/σ

2
t )∑Ln

l=1 exp(−
1
2‖rn,l‖

2
1/σ

2
t )
. (17)

Therefore, we defined uk as a set of feature parameters
{uk, uk,1, . . . , uk,N}.

From the above, P (f|Ek, uk) in (4) is changed as follows.

P (f|Ek,uk) =
M∑

m=1

gk,m(f) +
N∑

n=1

gk,n(f) + ε. (18)

IV. SETTING OF PARAMETERS M AND N

As described above, probability distributions of luma sample
values are modeled by a linear combination of M +N types
of Gaussian functions. In this paper, M is optimized for each
region Ω of 64 × 64 pels as an encoding parameter just like
a0, . . . , a3 in [7]. On the other hand, N is fixed to 25. The
details are as follows.

pk

R pels

Training region T
2R+1 pels

Target pel

Fig. 3. Training region for adaptive predictors.

Target pels Reference pels

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

Fig. 4. Reference pels for respective predictors.

A. The number of predictors N

In this paper, we exploit N = 25 types of affine predictors
for each pel. The value of N and arrangement of reference
pels are determined in an experimental approach. An ellipse
given by (19) where pk corresponds to its origin is used for
this purpose. Concretely, integer positions (x, y) in the ellipse
defined by parameters β, γ and θ, are picked up and used
as {r′n,l} if they are within the causal neighborhood region.
In this way, N types of arrangements are determined by N
combinations of β, γ and θ to fit various local textures. The
resulting arrangements are shown in Fig. 4.

O(x, y) = β · {(γ · c1)2 + (c2)
2} ≤ 1 (19){

c1 = x · sin θ + y · cos θ,
c2 = x · cos θ − y · sin θ.

Optimal arrangements of reference pels as well as the setting
of N are different for each image and each region depending
on textures. We tried to change only N in an adaptive way,
but coding rates were not improved. This suggests us that not
only N but also combinations of β, γ and θ must be optimized
together. It is not a straightforward process and will be studied
in future.
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B. The number of examples M

M is optimized in each region Ω within a range of 0 to
Mmax . If M is set to 0, no examples are used for modeling
the probability distribution in that region (i.e. only N = 25
types of predictors are used). The optimization can be achieved
in the following manner.

At first, M is initialized by a value of Mmax. In this paper,
we set Mmax to 31. In the case of fixed M with N = 25,
our preliminary experiment shows the best setting of M is
7. Therefore, we think Mmax = 31 is a sufficient number.
After updating the model parameters a0, . . . , a3 using the
quasi-Newton method, the probability modeling is performed
again by temporarily restricting the number of examples to
M ′ (M ′ = 0, . . . ,M).

PM ′(f |Ek,uk) = (20)

N∑
n=1

gk,n(f) + ε (if M ′ = 0),

M ′∑
m=1

gk,m(f) +
N∑

n=1

gk,n(f) + ε (otherwise),

PrM ′(f(pk) |Ek,uk) =
PM ′(f(pk) |Ek,uk)∑255
f=0 PM ′(f |Ek,uk)

. (21)

Under this restriction, the total number of coded bits in the
region Ω can be estimated by:

L(Ω,M ′) = −
∑

pk∈Ω

log2 PrM ′(f(pk) |Ek,uk). (22)

The calculation of (22) for successive values of M ′ can
be effectively performed by storing and updating both the
numerator and denominator of (21) while adding the Gaussian
function gk,m(pk) one by one in (20). Thus we can optimize
M to minimize the total bits.

M = argmin
M ′

L(Ω,M ′). (23)

The final value of M is sent to the decoder side with a fixed
length code of 5 bits as side-information.

V. PROCESSING PROCEDURE

The processing procedure at the encoder side is summarized
as follows.

a) The initial value of M is set to Mmax = 31, and
a0, . . . , a3 are set to the same initial values as [7].

b) M types of examples are collected as described in II,
then the values of fk,m and dk (m = 1, . . . ,M) are
stored.

c) N types of affine predictors are trained as described in
III, then values of fk,n, dk,n and uk,n (n = 1, . . . , N)
are stored.

d) The above b) and c) are processed for each pel in raster
scan order.

e) When the above processes have been completed for 64
lines, a0, . . . a3 and M are optimized for each region Ω
obtained by dividing those lines at even intervals.

Camera Couple Noisesquare

Airplane Baboon Lena

Lennagrey Peppers Shapes

Balloon Barb Barb2 Goldhill
Fig. 5. Test images.

i) Probability distribution models (18) are calcu-
lated.

ii) a0, . . . , a3 are updated by the quasi-Newton
method [9].

iii) The above i) and ii) are iterated until conversion
or maximum iteration steps (10 times in this
paper).

iv) Elements of uk are updated for every pel.
v) M is updated as described in IV-B.

vi) The above i),. . . ,v) are iterated at most 5 times,
then model parameters a0, . . . , a3 are linear
quantized.

vii) M and a0, . . . , a3 are encoded as side-
information.

f) The probability (18) is calculated for each pk.
g) The actual value of f(pk) is encoded by arithmetic

coding using the obtained probability model. A range
coder [10] is employed in our implementation.

h) The above procedures are exploited for all pels in the
given image.

At the decoder side, a0, . . . a3 and M are decoded as a
first step. Then examples are collected and predicted values
are generated as in b) and c) at each pel, and the luma sample
value is decoded by estimating probabilities as in f).

VI. EXPERIMENTAL RESULTS

To verify the efficiency of the proposed method, we con-
ducted coding simulations for gray scale still images shown in
Fig. 5. The coding rates are reported in Table I. Here, “Base”
means the base method [7] with the fixed number of examples
(M = 64). Other compared methods are as follows: MRP
(version 0.5) [4], Vanilc WLS D (version 1.0) [11], TMW
(version 0.51) [8], Glicbawls [3], WebP lossless (version 0.6.0)
[12], BMF [13], JPEG-LS [14], and JPEG 2000 [15].
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TABLE I
COMPARISON OF CODING RATES (BITS/PEL).

Image Size Proposed Base MRP Vanilc TMW BMF Glicbawls WebP JPEG-LS JPEG 2000
Camera

256×256
3.833 3.960 3.949 3.995 4.098 3.952 4.208 4.274 4.314 4.535

Couple 3.281 3.415 3.388 3.459 3.446 3.375 3.543 3.703 3.699 3.915
Noisesquare 5.296 5.298 5.270 5.159 5.542 5.238 5.415 5.203 5.683 5.634
Airplane

512×512

3.546 3.632 3.591 3.575 3.601 3.535 3.668 3.894 3.817 4.013
Baboon 5.698 5.727 5.663 5.678 5.738 5.677 5.666 5.891 6.037 6.107
Lena 4.237 4.330 4.280 4.246 4.300 4.252 4.295 4.514 4.607 4.684
Lennagrey 3.845 3.944 3.889 3.856 3.908 3.863 3.901 4.145 4.238 4.303
Peppers 4.176 4.267 4.199 4.187 4.251 4.177 4.246 4.495 4.513 4.629
Shapes 0.497 0.715 0.685 1.302 0.740 0.702 2.291 1.023 1.214 1.926
Balloon

720×576

2.584 2.673 2.579 2.626 2.649 2.560 2.640 2.925 2.904 3.031
Barb 3.733 3.997 3.815 3.815 4.084 3.804 3.916 4.547 4.691 4.600
Barb2 4.146 4.287 4.216 4.231 4.378 4.163 4.318 4.668 4.686 4.789
Goldhill 4.191 4.276 4.207 4.229 4.266 4.179 4.276 4.464 4.477 4.603
Average 3.774 3.886 3.826 3.874 3.923 3.806 4.030 4.134 4.222 4.367

In Table I, the best coding rates are shown as bold numbers
for each image. The coding rates of the proposed method are
improved for all test images by using local information (from
adaptive prediction) in addition to non-local information (by
examples search) in comparison with the “Base”. Additionally,
the proposed method achieves the lowest coding rates for most
of the test images and for “Average”. The proposed method
archives good performances for images with clear edges
such as “Camera” and “Shapes”. However, some conventional
methods archive lower coding rates than the proposed method
for images with low spatial correlation such as “Noisesquare”
and “Baboon”. To improve the performances for those images,
one solution may be to change the probability distribution
model from Gaussian to another version. For example, the
t-distribution could be an option since it is often used for
probability modeling as in [8] and [11].

As reference, we measured processing time of the proposed
method for 512 × 512 size images on a computer with Intel
Xeon@2.60Ghz CPU and 64GB memory. Average encoding
time was about 102 minutes, and the most part was spent for
the optimization process in V-e) (84 min.). Average decoding
time was about 18 minutes, because the optimization is not
necessary at the decoder. Processing time reduction as well as
extension to color images will be our future tasks.

VII. CONCLUSION

We have improved our previous lossless image coding
method (referred to as the base method) by introducing an
adaptive prediction technique. The base method estimates
probability distributions of luma sample values based on
examples collected from the causal neighborhood. Moreover,
some parameters that control shapes of the probability model
are optimized to reduce the number of coded bits. The pro-
posed method uses multiple affine predictors together with the
examples for the probability model optimization. Experimental
results show that the proposed method achieves the lowest
coding rates for most of the tested images in comparison with
the state-of-the-art lossless still image coding methods.
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