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Abstract—We consider the `∞-norm minimization problem,
which has been investigated in various practical applications.
Based on an equivalent problem reformulation we propose
an efficient algorithm that is suitable for implementation on
parallel hardware architectures. Simulation results show that
when applied to the peak-to-average ratio reduction problem, the
algorithm achieves the solution obtained by the primal-dual hybrid
gradient approach with proximal operator while significantly
reducing the required running time for convergence.

Index Terms—`∞-norm minimization, peak-to-average power
ratio (PAPR) reduction, successive convex approximation, paral-
lel optimization

I. INTRODUCTION

In this paper, we consider the `∞-norm minimization
problem which consists in minimizing the peak value of a
signal representation under the constraint that the represen-
tation error is bounded. This problem has recently been of
great interest in various practical applications, including peak-
to-average power ratio (PAPR) reduction in communication
systems [1], vector quantization [2]–[4], approximate nearest
neighbor search [5] and peak-force minimization in robotics
and control [6]–[8]. PAPR reduction plays an important role in
Massive MIMO communication systems where cost efficient
power amplifiers are used. In this application, the `∞-norm
minimization is treated as a convex approximation of a non-
convex PAPR minimization problem.

The aforementioned problem can be expressed as a standard
quadratically constrained quadratic program (QCQP), which
can in principle be solved by popular interior-point-method-
based solvers (e.g., SDPT3 [9], SeDuMi [10], MOSEK).
However, those solvers are often inefficient for the problem
sizes faced in large-scale MIMO systems. In the literature,
therefore, more competent methods are proposed, which are
suitable for large-dimensional optimization problems. In the
special case where the variables are real-valued and the
tolerance on mismatch is zero, the aforementioned problem
can be reformulated into a linear program and solved using
the simplex or interior point methods [11]. In [12], Cadzow
proposed an algorithm to solve the dual problem of the `∞
problem, in which the computational complexity is reduced as
compared to the linear programming approach. In the case of
complex-valued variables, two iterative algorithms based on
the primal-dual hybrid gradients with adaptive step-size are
proposed in [1]. However, the two mentioned algorithms do

not take advantage of the potent multiple parallel processing
units typically equipped in large-scale MIMO systems.

Motivated by the aforementioned observations, in this paper
we approach the `∞-norm minimization problem from a differ-
ent perspective. We show an equivalent problem formulation
for this problem, which allows us to adopt the successive
convex approximation framework of [13] in an efficient bisec-
tion procedure. Our proposed approach takes full benefit of
modern parallel hardware architectures and scales well with
the number of optimizing variables.

The rest of the paper is organized as follows. The problem
formulation is described in Section 2. Our proposed equivalent
problem formulation and the solution approach based on a
bisection procedure are provided in Section 3. Section 4
considers the parallel solution based on the successive con-
vex approximation approach required in each bisection step.
Simulation results are presented in Section V and we conclude
in Section VI.

Notation: The symbol C denotes the set of complex num-
bers and <{·} denotes the real part of a complex number.
We use x, x and X to denote a scalar, vector and matrix,
respectively. xn denotes the n-th element of x. ‖x‖p denotes
`p-norm of x and `∞-norm ‖x‖∞ = maxi |xi|, where |xi|
denotes the absolute value of xi. X† = XH(XXH)−1 stands
for the right inverse of X.

II. PROBLEM FORMULATION

Defining the function g(x) = ‖x‖∞ the `∞-norm mini-
mization problem is given by

(P-INF(ε)) min
x∈CN

g(x)

subject to ‖y −Hx‖2 ≤ ε,

where H ∈ CM×N is an over-complete matrix (also referred to
as frame) of full row-rank with M < N , the vector y ∈ CM
is the signal to be represented, the vector x ∈ CN is the
signal representation, and the non-negative parameter ε is the
tolerance on representation error. In the case PAPR reduction
in Massive MIMO networks, matrix H is the channel matrix, x
is the signal vector transmitted from the antenna array, and y is
the vector containing the information symbols for the different
users [14]. In the case ε ≥ ‖y‖2, the all-zeros vector is optimal
for problem P-INF(ε) and, hence, practically relevant choices
of ε are in the range 0 ≤ ε < ‖y‖2.
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Paper [1] analyzes the fundamental properties of the so-
lutions of problem P-INF(ε) using the uncertainty principle
(UP) introduced in [2], and then proposes the Convex Re-
duction of Amplitudes (CRAM) algorithm, in which problem
P-INF(ε) is formulated as a saddle-point problem for the
corresponding Lagrangian and the adaptive primal-dual hybrid
gradient (PDHG) scheme [15] is employed. The proximal
operator of the `∞-norm is used to update the primal variables
x. In PDHG the primal variables, the dual variables and
the residual variables are sequentially updated and therefore
implementation on parallel architectures is not well supported.
In the following section we consider an equivalent problem
formulation that can be solved in parallel using the successive
convex approximation framework of [13].

III. PROPOSED ALGORITHM FOR SOLVING PROBLEM
P-INF(ε)

In the following we introduce an equivalent problem for-
mulation that can be efficiently solved using the successive
parallel optimization framework of [13]. Towards this aim
we consider the mismatch function h(x) = ‖y −Hx‖2 and
introduce the following constrained least squares problem:

(P-CLS(α)) min
x∈CN

h(x)

subject to ‖x‖∞ ≤ α,

which is also convex. Here, the constant α denotes a non-
negative bound on the peak value of x. Problem P-CLS(α),
on the contrary to P-INF(ε), minimizes the representation error
with the peak value of signal representation bounded by a non-
negative parameter α.

Let g∗(ε) and h∗(α) denote the optimal value of problem
P-INF(ε) and P-CLS(α), respectively. Consider the problem P-
CLS(α) and assume that α = g∗(ε), i.e., P-CLS(g∗(ε)). The
following lemma can be proven.

Lemma 1: Any optimal point of P-CLS(g∗(ε)) is also
optimal for problem P-INF(ε).1

Proof: To prove Lemma 1 we first remark that any optimal
point x∗ε of problem P-INF(ε), with corresponding function
value g∗(ε), is feasible for problem P-CLS(g∗(ε)) as

g(x∗ε) = g∗(ε) = α. (1)
Let x∗α denote an optimal point of problem P-CLS(g∗(ε)), with
corresponding function value h∗(g∗(ε)). We conclude that:

h(x∗α) ≤ h(x∗ε) ≤ ε. (2)
From (2) we can also observe that x∗α is feasible for problem
P-INF(ε). Hence,

g∗(ε) ≤ g(x∗α). (3)

Furthermore, we remark that since x∗α is feasible for P-
CLS(g∗(ε)) it follows that g(x∗α) ≤ α. Considering our
assumption that g∗(ε) = α we conclude that (3) is satisfied
with equality. Hence x∗α is optimal for P-INF(ε).�

1Remark: Similar results as in Lemma 1 have been used in literature for
different problems, e.g., in the context of single group multicast beamforming
[16].

Lemma 2: Any optimal point of P-INF(h∗(α)) is also
optimal for problem P-CLS(α).

Proof: The proof follows the same line of arguments as the
proof of Lemma 1 and is therefore omitted.�

From Lemma 1 we conclude that in order to solve problem
P-INF(ε) we need to find a parameter α such that α = g∗(ε).
For finding g∗(ε), the following proposition is useful.

Proposition 1: Finding the optimal value g∗(ε) of problem
P-INF(ε) is equivalent to finding the minimum value of α
such that the optimal value of problem P-CLS(α), i.e., h∗(α),
is below ε.

Proof: We first remark the following properties of prob-
lems P-CLS(α) and P-INF(ε). Given two different values
α1 > α2 ≥ 0, the feasible set of problem P-CLS(α2)
is completely contained in the feasible set of problem P-
CLS(α1). Consequently, we have

h∗(α1) ≤ h∗(α2), ∀α1 > α2 ≥ 0. (4)
Therefore, h∗(α) is a non-increasing function in α. Similarly,
we can prove for P-INF(ε) that g∗(ε) is non-increasing in ε.
Considering the non-increasing function property in (4) and
making use of (2), we observe the following implication:

α ≥ g∗(ε)⇒ h∗(α) ≤ h∗(g∗(ε)) = h(x∗α) ≤ ε. (5)
Similarly, from Lemma 2 and the non-increasing property of
g∗(ε) it follows that

h∗(α) ≤ ε⇒ α ≥ g∗(ε). (6)
From (5) and (6) we see that the solution set of h∗(α) ≤ ε
is left-closed and bounded by g∗(ε). Hence, Proposition 1 is
proved.�

Based on Proposition 1, the bisection method can be em-
ployed to find the minimum α since h∗(α) is non-increasing.
The continuity of h∗(α) is not required, as our target is not to
find the point where h∗(α) is equal to a specific value. For the
bisection method, the initial interval [αl, αu] must be chosen
such that h∗(αl) > ε and h∗(αu) < ε. When α = 0, the
only feasible solution of problem P-CLS(0) is all-zeros vector
and, hence, h∗(0) = ‖y‖2 > ε. Therefore, a simple choice
for αl is 0. For the right endpoint αu, it is straightforward to
choose αu such that h∗(αu) = 0, i.e., the optimal solutions
are simply the solutions of linear equations Hx = y. One of
them is xLS = H†y, which is the solution with minimum
`2-norm. The smallest value αu that includes xLS in the
feasible set is ‖xLS‖∞ and, hence, h∗(αu) = 0. Therefore,
the convergence of the bisection procedure is guaranteed. The
details of the proposed bisection-based algorithm are presented
in Algorithm 1. The task of solving problem P-CLS(α) within
each iteration of the bisection procedure is done by an efficient
parallel iterative algorithm, which is presented in Section IV
and detailed in Algorithm 2.

IV. ITERATIVE ALGORITHM FOR SOLVING PROBLEM
P-CLS(α)

Problem P-CLS(α) can be reformulated as:

min
x∈CN

f(x) = ‖y −Hx‖22 (7a)

subject to |xn|2 ≤ α2, ∀n = 1, ..., N, (7b)
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Algorithm 1: The proposed algorithm for problem P-
INF(ε)

Input: y ∈ CM ,H ∈ CM×N , ε ≥ 0, η ≥ 0
1 Initialize xl ← 0,xu ← xLS, αl ← 0, αu ← ‖xu‖∞;
2 while αu − αl > η do
3 Set α← (αl + αu)/2, and compute optimal value

h∗(α) and solution x∗α of problem P-CLS(α)
using Algorithm 2 with initial guess xl;

4 if h∗(α) > ε then
5 αl ← α,xl ← x∗α;
6 else
7 αu ← α,xu ← x∗α;
8 end
9 end

10 return αu,xu

Algorithm 2: The successive convex approximation
algorithm for problem P-CLS(α)

Input: x0 ∈ X ,y ∈ CM ,H ∈ CM×N , α, t← 0
1 while not converged do
2 Compute x̂t using (12);
3 Compute γt by the exact line search (14);
4 Update xt according to (10) and set t← t+ 1;
5 end
6 return xt

which has the same formulation as the symbol detection
problem investigated in [17] in the context of large-scale
MIMO systems. In [17] an efficient parallel iterative algorithm
is proposed for large-scale systems based on the successive
convex approximation framework described in [13]. We briefly
describe the algorithm in this section.
Similar to other gradient methods for convex problems [18],
this algorithm starts from an feasible solution x0 (an initial
guess) of problem (7) and iteratively updates the solution based
on a computed descent direction and a selected step-size. In
each iteration, the descent direction is obtained by solving
an approximate convex problem and the step-size is computed
using the exact line search method [18]. With the approximate
problem and step-size presented in the following, the conver-
gence to the optimal solution of problem (7) is guaranteed,
which is explained in [13]. In the following, we first formulate
the approximate problem. Then, the approximate problem is
decomposed into N independent subproblems, which can be
solved in parallel with closed form solutions. Computation
of the optimal step-size, as required for the update phase, is
presented afterwards.

The Approximate Problem: The Jacobi algorithm decou-
ples the variables in the objective function, so that the problem
can be decomposed. Let xt denote the starting point in the t-
th iteration. Employing the Jacobi algorithm, the approximate
function of f(x) in the t-th iteration around point xt can be

expressed as

N∑
n=1

f(xn,x
t
−n) =

N∑
n=1

‖y −H−nx
t
−n − hnxn‖22, (8)

where H−n denotes the matrix obtained by eliminating the
n-th column hn from matrix H, and x−n denotes the vector
containing all elements of x except xn.

Defining ytn = y −H−nx
t
−n and X as the feasible set of

problem (7), the approximate problem can be expressed as

x̂t = argmin
x∈X

N∑
n=1

‖ytn − hnxn‖22. (9)

The vector x̂t − xt represents a descent direction of the
objective function f(x) in the domain of problem (7). Thus,
the vector xt is updated after each iteration, using the rule:

xt+1 = xt + γt(x̂t − xt), (10)

where γt ∈ (0, 1] is a step-size. The algorithm has converged
to the optimal solution of problem (7), when x̂t = xt.

Decomposition of the Approximate Problem: The vari-
ables xn are decoupled in both the objective function and the
constraints in problem (9). Consequently, problem (9) can be
decomposed into to N independent subproblems as

x̂n = argmin
xn

‖ytn − hnxn‖22 (11a)

subject to |xn|2 ≤ α2, (11b)

where x̂n is the n-th element of vector x̂t. Since each
subproblem exclusively depends on a single variable, each
subproblem can be solved independently and concurrently.

We can apply the Karush-Kuhn-Tucker (KKT) optimality
conditions to solve each convex subproblem [19]. Then, a
closed form expression for the optimal solution x̂n of each
convex subproblem can be derived as

x̂n = min

(
|hHn ytn|
‖hn‖2

, α

)(
hHn ytn
|hHn ytn|

)
. (12)

We recommend paper [17] for the detailed derivation of this
closed form expression.

Optimal Step-size: The optimal update step-size γt is
computed using the exact line search method, which searches
on the line segment between xt and x̂t for the solution that
minimizes original objective function f(x). Therefore, the
computation of the optimal step-size is formulated by the
following convex problem:

γt = argmin
0≤γ≤1

‖y −H
(
x̂+ γ(x̂t − xt)

)
‖2︸ ︷︷ ︸

Z(γ)

. (13)

Suppose the gradient of Z(γ) with respect to γ vanishes at
γ∗, then γt is the projection of γ∗ onto the interval [0, 1].
Consequently, γt can be computed as

γt =

[
<{pHq}
qHq

]1
0

, (14)
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Fig. 1. Simulation results with sub-sampled DFT matrix

where p = y −Hxt, q = H(x̂t − xt), and [·]10 denotes the
projection operation onto the interval [0, 1].

Finite Termination: For an intermediate value of α, the ex-
act solution of problem P-CLS(α) is not required by Algorithm
1. The objective is only to verify whether the optimal value
h∗(α) is below the error tolerance ε. Therefore, in the case
where the function value of the approximate solution h(xt)
has already reduced below ε, Algorithm 2 can be terminated
regardless of the optimality gap, which is advantageous com-
pared to other dual approaches in which each dual problem
must be solved exactly to update the dual variable.

V. SIMULATION RESULTS

In this section, we compare the performance of proposed
bisection-based parallel optimization approach with that of
CRAM algorithm2. We remark that since the CRAM algorithm
does not fully support implementation on parallel computing
architectures, when comparing the running time of both algo-
rithms, we implemented our proposed parallel algorithm based

2An implementation of CRAM in MATLAB is provided on http://vip.ece.
cornell.edu/software papr.html
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Fig. 2. Simulation results with i.i.d. complex Gaussian matrix

on only sequential update. Thus, the reported results are based
on a serial implementation in MATLAB. Additional gains can
be expected when considering fully parallel implementation
on corresponding architectures. All experiments are performed
on a desktop computer with an AMD Ryzen 7 2700X eight-
core 3.7 GHz CPU and 32 GB RAM. The convergence of
the CRAM algorithm to the optimal solution of problem P-
INF(ε) is proved by theoretical analysis and simulation results
in [1]. In most of the applications, the original objective is to
minimize the dynamic range. Hence, we compare the PAPR
of the solutions returned by the algorithms and the required
convergence time for two classes of frames, respectively. Fig.
1 shows the simulation results for frames whose rows are sub-
sampled discrete Fourier transform (DFT) bases of dimension
N and Fig. 2 for complex i.i.d. Gaussian frames. The PAPR
of a nonzero vector x ∈ CN is defined as

PAPR(x) =
N‖x‖2∞
‖x‖22

. (15)

We fix M = 500 and vary N from 500 to 2000. For each
dimension pair (M,N), we perform 100 Monte-Carlo trials,
and for each trial we generate a frame H from each frame class
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specified above. We then generate a complex i.i.d. zero-mean
Gaussian vector y and the tolerance ε = 0.001‖y‖2.

For both two classes of frames, we can observe that the
two algorithms converge to solutions with equivalent quality
in terms of PAPR. In most applications, the region of high re-
dundancy r = N/M is of great importance as here the optimal
solution of problem P-INF(ε) has low PAPR. In the region of
high redundancy, our proposed algorithm significantly reduces
the required running time for convergence .

VI. CONCLUSION

In this paper, we show an equivalent problem formulation
for the `∞-norm minimization problem, which can be solved
in parallel using the successive convex approximation frame-
work in a bisection procedure. Simulation results show the
convergence and efficiency of our proposed algorithm.

For future work, in order to further accelerate the bisection
procedure, restricting the initial interval is of great interest and
thus requires further investigation.
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