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Abstract—In this paper, we introduce a Bayesian framework to
perform model selection for nonlinear acoustic echo cancellation.
This is especially important for scenarios where the functional
form of the underlying nonlinear distortion is time-varying
and/or is unknown, e.g., nonlinear distortions that vary with
the volume level of the loudspeakers. To this end, the proposed
method evaluates the model probabilities, or what is known as
the evidence density, in a Bayesian manner. Thus, unlike convex
and affine combination schemes of adaptive filters, the proposed
method optimizes both the model complexity as well as the
model performance by a single criterion. Moreover, by using the
significance-aware principle, the proposed framework is realized
in a computationally efficient way. The method is validated by
three experiments using synthesized time-invariant nonlinearities,
synthesized time-varying nonlinearities, and using real recorded
nonlinearities.

I. INTRODUCTION

Acoustic Echo Cancellation (AEC) is a crucial task for
reliable acoustic human-machine full-duplex interfaces [1].
Due to the wide-spread use of mobile phones, nonlinear
distortions are one of the most relevant challenges for acoustic
echo cancellation research [2], [3]. Numerous publications
address the task of Nonlinear Acoustic Echo Cancellation
(NLAEC) by proposing a wide range of basis functions for
Hammerstein models that try to model the unknown nonlinear
distortions [4]–[8]. To estimate the model parameters, many
algorithms have been proposed [9]–[12]. It should be noted
that for alternative approaches, such as neural networks, e.g.,
[13], [14], hyperparameters have to be chosen as well.

A common strategy for NLAEC is to pre-assume a few
model characteristics, e.g., the basis functions for the Ham-
merstein model-based NLAEC, the maximum order of the
basis functions, or the number of neurons in the neural
networks approaches. This can lead to a suboptimal choice
of these characteristics and thus a reduction of the NLAEC
performance. Moreover, such a strategy is prone to failure
when the functional form of the nonlinear distortion is subject
to change. The goal of this paper is to propose a Bayesian
model selection scheme to allow for an autonomous choice of
an appropriate nonlinear echo path model.

Known model selection strategies for NLAEC, e.g., [15]–
[19], propose adaptive convex or affine combinations of can-
didate models which converge to the optimum model over
time [15]–[19] by evaluating a signal error-based criterion
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Fig. 1: NLAEC scenario.

only. Given sufficient convergence time, these strategies favor
complex models which generalize poorly to changing input
signal statistics and suffer from slow tracking of time-variant
echo paths. Heuristic measures could be applied to [15]–[19]
to consider the model complexity. However, it is not intuitive
how to quantify the complexity of, e.g., Hammerstein models
with different basis functions. Genetic algorithms [20] and
correlation distance metrics-based methods [21] have also been
proposed, but would result in prohibitively complex schemes
for AEC where the number of degrees of freedom is typically
on the order of hundreds to thousands.

In this paper, we introduce the Significance-Aware Evi-
dence Maximization (SA-EM) to perform an efficient model
selection for NLAEC. This framework is an extension of
[22], where model selection is used for neural networks.
The proposed framework enables a numerical comparison
between different competing models for NLAEC that takes
into consideration not only the errors produced by each model,
but also the complexity of the model and the uncertainty
associated with its parameter estimation process. Note that the
robustness of the proposed approach against non-stationary
noise, such as double-talk or burst-noise, is not considered
as we aim at verifying the optimality of the model selection
scheme. The robustness of the model selection should be
addressed in a later work.

This paper is structured as follows: in Section II the NLAEC
problem is introduced. In Section III, the evidence maxi-
mization framework is derived. In Section IV the proposed
framework is evaluated for synthesized and real nonlinearities.
Finally, conclusions are drawn in Section V.
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II. PROBLEM FORMULATION

A typical NLAEC scenario is depicted in Figure 1. At
time instance n, a block of length M of the input signal
sn = [s(n), s(n− 1), ..., s(n−M − 1)]T is nonlinearly dis-
torted by the loudspeaker. The nonlinearly distorted signal
is approximated by d̂n = fn(ân, sn), where the nonlinear
memoryless preprocessor fn(ân, sn) approximates the non-
linearity arising from the loudspeaker and is characterized by
the estimated parameter vector ân = [â0,n, ..., âQ,n]T in

fn(ân, sn) =

Q∑
i=0

âi,ngi(sn), (1)

and where gi denotes the i-th basis function, while Q de-
notes the highest order of the basis functions. It is common
to assume that the optimum family of time-invariant basis
functions and order Q are known a priori when modeling the
nonlinear distortions of the far-end signal sn [5], [6], [23],
[24]. Moreover, the linear acoustic echo path between the
loudspeaker and the microphone at time instant n is modeled
by an estimated linear finite impulse response (FIR) filter
of length M , ĥn = [ĥ0,n, ..., ĥM−1,n]T. Consequently, the
estimated microphone signal is then obtained by

ŷn = ĥT
nfn(ân, sn). (2)

In this paper, we consider scenarios where the family of
basis functions gi and their maximum order Q are unknown
and/or time-varying and propose an algorithm to estimate both
in an optimal way.

III. THE EVIDENCE MAXIMIZATION FRAMEWORK

This paper introduces the use of the evidence maximization
framework [22] and adapts it for NLAEC. In the following,
an overview of the evidence maximization framework is
given, where the relation describing the model probabilities
is derived. Afterwards, the evidence maximization framework
is adapted for the task of NLAEC by using the Significance-
Aware principle which keeps the computational load of the
overall framework small.

A. Overview

Denoting the j-th model defined by a family of basis func-
tions and maximum order Qj , Mj = {gij |i ∈ {1, ..., Qj}},
the posterior probability of this model is

P (Mj |D) ∝ P (Mj)P (D|Mj), (3)

where D = {sk, yk|n ∈ {1, ..., n}} denotes the set containing
the observed far-end and microphone signals.

Unless there is a reason to favor one model over another, so
that P (Mj) is equal for all j, maximizing the model posterior
probability P (Mj |D) becomes equivalent to maximizing the
model likelihood P (D|Mj). In the context of Bayesian model
fitting, the model likelihood is known as the evidence, and is
obtained by

P (D|Mj) =

∫
P (D|Mj , ẑn)P (ẑn|Mj)dẑn, (4)

where ẑn = [ẑ1,n, ẑ2,n, ..., ẑL,n]T denotes the model parame-
ters vector, i.e., ẑn = [âT

n, ĥ
T
n]T, while P (ẑn|Mj) is the prior

density of the parameter vector given the model used.
By denoting ẑMP,n as the most probable parameter vector

and assuming that (4) describes an integral over a Gaussian
density, we arrive (by using Laplace’s method) at [25]

P (D|Mj) ≈ P (D|Mj , ẑMP,n)P (ẑMP,n|Mj)(2π)
L
2 det−

1
2C︸ ︷︷ ︸

Occam factor

,

(5)
where C = −∇∇logP (ẑn|D,Mj) is the Hessian matrix of
the parameters posterior. Equation (5) is used throughout the
rest of this paper to evaluate the evidence.

To provide an intuition into how the so-called ’Occam
factor’ [26] in (5) quantifies the model complexity, assume
that the parameters posterior

P (ẑn|D,Mj) ∝ P (D|Mj , ẑn)P (ẑn|Mj)

has a sufficiently dominant and narrow peak at the most
probable parameter vector ẑMP,n. Then, the evidence can
be approximated by the product of the peak’s height
P (D|Mj , ẑMP,n)P (ẑMP,n|Mj) and volume ∆ẑn [22]

P (D|Mj) ≈ P (D|Mj , ẑMP,n)P (ẑMP,n|Mj)∆ẑn︸ ︷︷ ︸
Occam factor

. (6)

Additionally assuming a uniform prior covering the volume
∆0z simplifies the Occam factor to ∆ẑn

∆0z
, which describes

the ratio between the volumes of the posterior and the prior.
This implies that the Occam factor provides a measure for the
model-specific simplicity of the parameterization and is thus
not just responsible for penalizing a high model order.

B. The Significance-Aware Evidence Maximization

An obvious and immediate problem of using (5) for AEC
lies in the term det−

1
2C, where C tends to be a rank-deficient

matrix for long Room Impulse Responses (RIRs), due to
the tails having low energy. To this end, we employ the
Significance-Aware (SA) [11] principle, which in addition to
overcoming the aforementioned difficulty eases the computa-
tional load of the algorithm. The SA concept divides the RIR
into two parts ĥn = [ĥT

direct,n, ĥ
T
comp,n]T. The direct echo path

component ĥdirect,n of length 2R + 1 is centered around the
highest energy peak, which contains the most significant part
of the RIR. The complementary component ĥcomp,n contains
the remaining coefficients. The SA principle is employed as
follows: an estimate of the RIR vector is obtained using the
Normalized Least Mean Square (NLMS) algorithm

ĥn = ĥn−1 +
µ

d̂
T
nd̂n + ε

d̂nen, (7)

where µ is a scalar step size, ε is a positive constant to prevent
division by zero, and en = yn − ŷn is the error signal. The
adaptive FIR filter (7) is then subdivided into the components
ĥdirect,n, and ĥcomp,n as a starting point for the next step. The
parameter vector is chosen to consist of the direct acoustic
path only ẑn = [ĥT

direct,n, â
T
n]T, and the nonlinearly distorted
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No nonlinear distortions Underlying nonlinearity (16) Underlying nonlinearity (17)
Qtrue = 0 Qtrue = 1 Qtrue = 2 Qtrue = 1 Qtrue = 2

Linear AEC Q1 = 0
Probability 0.39 0.17 0.18 0.1 0.05

ERLE/[dB] 25.7 18.2 15.3 13 12.5

PF-based
Q2 = 1

Probability 0.21 0.29 0.18 0.25 0.2
ERLE/[dB] 25.7 24.1 19.4 22.3 20.7

Q3 = 2
Probability 0.12 0.17 0.25 0.14 0.27
ERLE/[dB] 25.6 23.9 22.1 22.2 24.0

Legendre-based
Q4 = 1

Probability 0.17 0.24 0.23 0.38 0.17
ERLE/[dB] 24.8 23.4 20.0 23.8 14.5

Q5 = 2
Probability 0.11 0.12 0.14 0.13 0.31
ERLE/[dB] 25.2 22.9 20.8 22.2 24.5

TABLE I: ERLE and average model probabilities for static nonlinearities, see Subsection IV-A

signal is decomposed analogously into the subvectors d̂direct,n

and d̂comp,n [11]. Based on this, the direct path component of
the microphone signal is obtained through

ydirect,n = yn − ycomp,n = yn − ĥT
comp,nd̂comp,n, (8)

while the error associated with the direct path is estimated via

edirect,n = ydirect,n − ŷdirect,n = ydirect,n − ĥT
direct,nd̂direct,n (9)

The direct path signals ydirect,n, d̂direct,n and edirect,n are then
used to adapt the parameter vector ẑn = [ĥT

direct,n, â
T
n]T using

the NLMS algorithm.
In order to evaluate (5) for a specific model Mj , we adopt

a block-based scheme: at the end of block l, we start by
evaluating the parameter vector likelihood

P (Dl|Mj , ẑMP,l) = N (||edirect,l||2, σ2
v), (10)

where Dl denotes the set containing the l-th frame of the far-
end and microphone signal. ẑMP,l denotes the latest estimate
of the parameter vector ẑ, and σ2

v denotes the variance of the
additive white noise in the microphone signal. || · ||2 is the l2
norm, and edirect,l is the direct path error signal for the l-th
frame.

Evaluating (10) implicitly assumes that the latest estimate
of the parameter vector is not too far from the initial estimate
at the start of the l-th frame. Finally, the Hessian Ĉn matrix
estimate is updated by

Ĉn = (1− λ)Ĉn−1 + λĈinstant,n, (11)

where 0 < λ < 1 is a forgetting factor, while Ĉinstant.,n is the
instantaneous estimate of the Hessian obtained, following the
notation in [26], via

∂2logP (ẑn|D,Mj)

∂hdirect,n∂hT
direct,n

= d̂direct,nd̂
T
direct,n, (12)

∂2logP (ẑn|D,Mj)

∂an∂aT
n

= GT
nhdirect,nh

T
direct,nGn, (13)

∂2logP (ẑn|D,Mj)

∂an∂hT
direct,n

= GT
n · edirect,n, (14)

where Gn = [g1(sn), g2(sn), ..., gQj
(sn)].

IV. EXPERIMENTS

The proposed SA-EM is evaluated for three scenarios.
The first scenario aims at verifying that the SA-EM is ca-
pable of selecting the underlying time-invariant nonlinearity
in Subsection IV-A. In the second experiment, we evaluate
the performance of the SA-EM in tracking an abrupt change
in the underlying echo path in Subsection IV-B. Finally, an
experiment with real recordings using a commercial mobile
phone is conducted. This experiment aims at demonstrating
the benefit of using the SA-EM in scenarios such as double-
talk where continuous adaptation of the competing models is
not possible in Subsection IV-C.

To evaluate the performance of each model, the Echo Return
Loss Enhancement (ERLE) is used [12]

ERLEn = 10log10

E{y2
n}

E{e2
n}
, (15)

where E(·) denotes the expectation operator.
In evaluating the SA-EM, the direct path is modeled using

11 coefficients, i.e., R = 5. In addition, λ = 0.005 is used for
updating the Hessian matrix in (11). The parameter vector’s
prior P (ẑn|Mj) in (5) is identical for the different models and
is set as a uniform distribution over the range 0 < zi < 5;∀i.
The SA-EM uses frames of length K = 512 samples.

A. SA-EM for a Static Nonlinearity

In this experiment, we aim to verify that the SA-EM is
indeed able to select the correct basis functions for nonlinearly
distorted and noisy speech signals in reverberant environments.
To this end, we use a female speech signal sn with a sampling
frequency of 16kHz. The signal sn is nonlinearly distorted via
dn = f(an, sn). Synthesized nonlinearities are used in this
experiment as for nonlinearities in real-world recordings, no
ground-truth information is available to judge the performance
of the selection method.

The SA-EM is evaluated for two different families of basis
functions, namely the monomial basis of odd order, which is
also known as Power filters (PF) [6]

f(an, sn) =

Qj∑
i=0

ais
2i+1
n , (16)
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Fig. 2: ERLE and model probabilities, see Subsection IV-B

where s2i+1
n = [s(n)2i+1, ..., s(n − M − 1)2i+1]T and the

Legendre polynomials (LP) of odd order L2i+1(·) [5]

f(an, sn) =

Qj∑
i=0

aiL2i+1(sn). (17)

In addition to being evaluated for two different families of
basis functions, the proposed framework is also evaluated for
different maximum orders Qj of the nonlinear functions.
After being distorted by one of the nonlinear functions, the
signal dn is convolved by a recorded (RIR) h, and corrupted
by white Gaussian noise vn

yn = hTdn + vn, (18)

at a Signal-to-Noise Ratio (SNR) of 30dB.
In Table I, the ERLE and model probabilities, averaged over

all frames, are summarized for the different models. For the
case of a purely linear echo path, i.e., no nonlinear distortion, it
can be seen that even though the different models and orders
perform similarly in terms of the ERLE values, the model
probability clearly favors the purely linear AEC. Furthermore,
when introducing the nonlinear distortion to the signal, the SA-
EM is able to successfully identify the underlying functional
form of the nonlinearity and the correct order. Moreover, it can
be observed that the SA-EM does not simply favor the model
with the lowest error, where despite having several models
yielding the same performance level for the purely linear echo
path, the SA-EM still favors the purely linear AEC model
heavily.

B. Tracking a Time-variant Model

In this experiment, the SA-EM is evaluated for an echo
path that goes through a drastic change due to the sudden
disappearance of the nonlinear distortion. Such a scenario can
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Fig. 3: ERLE and model probabilities, see Subsection IV-C

occur in miniaturized loudspeakers for an abrupt change in
the volume levels. To this end, a female speech signal sn
with a sampling frequency of 16kHz is nonlinearly distorted
via (16) with Q = 1 and a1 = 1.2 and then convolved by a
recorded impulse response h. Finally, the microphone signal
is corrupted by white noise resulting in an SNR level of 30dB.
To simulate a sudden change in the underlying echo path, the
nonlinear distortion is removed at t = 5s, i.e., a1 = 0 in (16),
and the underlying model is turned into a purely linear one.

The competing models in this experiment are a purely linear
model {M1, Q1 = 0} and three models based on (16) with
{M2, Q2 = 1}, {M3, Q3 = 2}, and {M4, Q4 = 3}.

The ERLE of the different models and probabilities are
depicted in Figure 2, where the change in the echo path is
marked by the dashed line. As it can be seen in the figure,
the SA-EM is capable of quickly identifying the change in
the model. Moreover, a stable performance can be observed,
where other than during the first second, which reflects the
model parameters convergence interval, the SA-EM is stable
in favoring the correct model even during a speech pause
around t = 6s. Furthermore, the benefit of using the SA-EM
for selecting the underlying model is clear, where by simply
choosing the most probable model at the end of each frame, a
gain of 3 dB is obtained compared to using a nonlinear model
which is still adapted for the entire duration.

Finally, the SA-EM resulted in a 20% runtime overhead
compared to adapting the competing models by the NLMS
algorithm.

C. Real System Performance

In this experiment a speech signal, sampled at fs = 16kHz,
is emitted and recorded by a commercial mobile phone at a
SNR level of 30dB. The signal is almost 30s long.
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The different models considered in this experiment are a
purely linear model {M1, Q1 = 0} and 3 models based on
Legendre polynomials of odd orders (17), i.e., {M2, Q2 = 1},
{M3, Q3 = 2},and {M4, Q4 = 3}. The different models are
configured with a linear filter ĥn of 265 taps and the different
coefficients ĥn and ân are adapted via the NLMS algorithm.

The adaptation of different models and of the SA-EM is
stopped at t ≈ 15s corresponding to freezing the filters in a
double-talk scenario.

The ERLE resulting from each model is depicted in Fig-
ure 3, where the model of highest order {M4, Q4 = 3}
performs best during the online adaptation period. Once the
adaptation is stopped, i.e., represented by the dashed line, a
model of a lower order {M3, Q3 = 2} actually generalizes
better and yields higher ERLE values.

As seen from the model probabilities in the figure, the SA-
EM increasingly favors the model that generalizes best, i.e.,
{M3, Q3 = 2}. As a consequence, using the SA-EM, one is
capable of pre-selecting the model that performs best in cases
such as double-talk where continuous adaptation is not always
possible.

V. CONCLUSION

In this paper, we introduced the SA-EM, a Bayesian frame-
work for model selection in NLAEC. A task that is relevant
in cases where the nonlinear distortion are either entirely
unknown and several proposed models need to be compared,
or in cases where the nonlinear distortion is subject to an
abrupt and drastic change.

The proposed framework is realized efficiently by using the
SA principle, resulting in a limited computational overhead.
In order to verify the proposed framework, three experiments
were conducted. The first experiment was conducted using
synthesized nonlinear distortions where the SA-EM ability of
selecting the correct underlying models was verified. A second
experiment, also using synthesized nonlinear distortions is
carried out, where the ability of the SA-EM was capable of
tracking an abrupt change in the underlying nonlinear model.
Finally, an experiment using real recordings was conducted to
demonstrate the benefit of using the SA-EM in a double-talk
situation, where the SA-EM correctly selects the model that
generalizes best.
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