
Applications of Projected Belief Networks (PBN)

Paul M. Baggenstoss

Fraunhofer FKIE, Fraunhoferstrasse 20

53343 Wachtberg, Germany

Email: p.m.baggenstoss@ieee.org

Abstract—The projected belief network (PBN) is a layered
generative network, with tractable likelihood function (LF) that
can be trained by gradient ascent as a probability density
function (PDF) estimator and classifier. The PBN is derived
from a feed-forward neural network (FF-NN) by finding the
generative network that implements the probability distribution
with maximum entropy (MaxEnt) consistent with the knowledge
of the distribution at the output of the FF-NN. The FF-NN,
from which the PBN is derived, is a complementary feature
extractor that exactly recovers the PBN’s hidden variables. This
paper presents a multi-layer PBN and a deterministic PBN
that are tested using a subset of MNIST data set. When the
deterministic PBN is combined with the dual FF-NN, it forms
an auto-encoder that achieves much lower reconstruction error
on testing data than the equivalent conventional network and
functions significantly better as a classifier.

I. INTRODUCTION

A. Background and Motivation

Discriminative neural networks have dominated machine

learning for decades. The performance of generative networks

lags behind because they need to model the generative process

underlying the data, a much harder task than discrimination

[1]. Yet, interest in generative models persists because a

model of the underlying process is useful, as exemplified by

variational autoencoders (VAE) [2], and generative adversarial

network [3] (GAN) which have sparked considerable interest.

While the generative task is harder, given time and effort,

generative models can perform as well as classifiers as their

discriminative counterparts. For example, when Hinton’s deep

belief network (DBN) was published, the DBN worked bet-

ter than comparable fully-connected (non-convolutional) feed-

forward networks [4]. While training algorithms have been

developed for VAE and DBN, the likelihood functions (LF)

are not available in closed-form, so need to be approximated,

using stochastic variational methods in the case of VAE [2],

or Monte Carlo approximations in the case of DBN [5]. The

projected belief network (PBN) is a new type of generative

network with tractable LF that generates data layer-wise from

hidden variables similar to a deep latent Gaussian model

(DLGM). But, in contrast to other generative models, the

PBN is related to a feed-forward neural network (FF-NN) by

a duality relationship [6]. The dual FF-NN, which is here

called dual analysis network (DAN), exactly recovers the

hidden variables of the PBNs data generation process. With

tractable LF, the PBN has the potential to enable a new class

of generative models and algorithms.

B. Main Idea

The projected belief network (PBN) was previously intro-

duced as a dual counterpart to a feed-forward neural network

(FF-NN) [6]. The PBN is derived from a FF-NN by asking the

following question: knowing the FF-NN and the distribution

of the output variables (features) of the FF-NN, what is the

maximum entropy (MaxEnt) distribution of the visible data

consistent with the given features distribution? The PBN is the

generative network that implements this MaxEnt distribution

[6]. Not surprisingly, the PBN uses the same network weights

as the FF-NN from which it is derived, and employs a special

“activation” function that gives it its unique properties. A

deterministic version of the PBN is created if instead of

generating random data in each layer, the conditional mean

is propagated. The deterministic PBN is the complementary

network to the DAN and combined with the DAN forms a

new type of auto-encoder.

C. Paper Contributions

The PBN has been previously introduced [6]. Novel contri-

butions of this paper include (a) experimental results compar-

ing PBN with other models as a function of data dimension,

(b) the detailed description of a multi-layer PBN, (c) the

treatment of the issue of sampling efficiency, (d) the conceptual

comparison of PBN with the VAE, and (e) the description of

a deterministic PBN and its application as an auto-encoder,

and experiments showing significant improvements over a

conventional auto-encoder of the same structure.

II. PROJECTED BELIEF NETWORKS (PBN)

A. PBN Exact Form

Figure 1 illustrates a two-layer PBN in its exact, asymptotic,

and deterministic forms. It can be easily extended to more

layers. Near the bottom of the figure is the dual analysis net-

work (DAN), a conventional feed-forward network employing

an activation function ✕♥✭ ✮ in layer �. Optionally, an energy

statistic (ES), denoted by ❡ ❂ t✭①✮ is extracted from the input

of each layer. The figure illustrates both data generation by

different forms of the PBN (left to right) and feature extraction

by the DAN (right to left). Data generation originates by a

feature generating distribution ❣✭③✷✮, then continues layer by

layer. In layer � of the exact form of the PBN, (top), the

activation function and bias (if used) are inverted, and the

2019 27th European Signal Processing Conference (EUSIPCO)

978-9-0827-9703-9/19/$31.00 ©2019 IEEE

W2

W1
1

b

z 1

x2

1
−b

z 1W2

W1

h2

h1

UMS: select xUMS: select x

1
−b

x2

xt() = e }

,x : W’ x = z{
x : W’ x = z ,{

xt() = e }

z 1

z 2

xt()1
e

z 2

z 2g()

2
b

z 2

z 2

z 2
2

−b

z 2

2
e

1
e

W2

W1h1h2z 2

αα2
x2

2
e

1
e

x1

x1

x1

x1

λ ()1

λ ()1

λ ()1

λ ()1

λ ()1

λ ()1

xt()2
e

1
−b

z 1

2λ ()
−1

2λ ()
−1

2λ ()
−1

2λ ()
−1

2λ ()
−1

2λ ()
−1

αα1

3λ ()
−1

3λ ()
−1

x3

x3

p (x;)α
1

p (x;)α
1

p (x;)α
1

p (x;)α
1

p (x;)α
1

λ ()

λ ()

x3

uniformly

from the set

uniformly

from the set

Deterministic PBN

DAN

Source

(With Optional Bias and Activation Function)

Feature Generation

Exact PBN

Asymptotic PBN

Data

Hypothetical

Generation

Feature

g()

 2
zγ ()

−1

 2
zγ ()

−1

 1
zγ ()

−1

 1
zγ ()

−1

λ ()

λ ()

λ ()

α

α

α

p (x;)
2

p (x;)
2

p (x;)
2

2

2

2

3

3

Fig. 1. A 2-layer PBN in three forms, exact, asymptotic, and deterministic,
and the corresponding dual analysis network (DAN).

feature ③♥ is presented to the “UMS” block in which a sample

① is drawn randomly from the set ▼♥✭③♥❀ ❡♥✮ defined by

▼♥✭③♥❀ ❡♥✮ ❂ ❢① ✿ ❲
✵
♥① ❂ ③♥❀ t♥✭①✮ ❂ ❡♥❀ ① ✷ ❳♥❣❀

(1)

where ❳♥ is the input range of layer � and ❡♥ ❂ t♥✭①✮ is

the optional ES. The sample ① must be drawn with uniform

distribution, so that no member of ▼♥✭③♥❀ ❡♥✮ is more likely

to be drawn than any other. The sampling procedure is

therefore called uniform manifold sampling (UMS) [7].

By the definition of UMS, the DAN will exactly recover the

variables ③✁, ③✶. When the PDF of ③✁ is known, denoted by

✂ ♣✄☎✆ ☛✝ ✕✄☛✝ ✞✄✟✝ ♣✄✟✆❍✠✝

❘◆ ✡☞✌✍☞✎✏
✑✒✌✑✛✑✏

✓
✔✙✖✑

(Gauss.) ☛
P
✐ ☎
✔
✐

✡☞✗
✑✌✘✏✒✑

✚✔✙✜☞✢✒✑

✣◆ ☛✤✥✦✧ (Expon.) ★✩☛
P
✐ ☎✐ ✤✥✪✚✫✜

❯◆
✬

✦
✡✎✥✯

✰
✤✦✧ (TED) ✡✎

✡✎✥✯ ✱
✯
✦ none 1

TABLE I
GENERATING DISTRIBUTIONS ♣✄☎✆ ☛✝, EXPECTED VALUE OF GENERATING

DISTRIBUTIONS ✕✄☛✝, ENERGY STATISTICS (ES) ✞✄✟✝, AND REFERENCE

HYPOTHESES ♣✄✟✆❍✠✝ FOR FOR DATA RANGES ❘◆ , ✣◆ , AND ❯◆ . THIS

TABLE CONCERNS A SINGLE LAYER AND ✟ IS ASSUMED TO BE THE

VISIBLE DATA FOR THE GIVEN LAYER LAYER WITH DIMENSION ✲ AND

RANGE ✟ ✳ ✂ .

✴✭③✁✮, then the PBN generates samples the PDF:

✸✹✭①✶✺ ❚❀ ✴✮ ❂
✻

✼

✸✭①✶✺✽✾❁✶✮

✸✭③✶✺✽✾❁✶✮
❥❏❃❄❅✑ ❥

✸✭①✁✺✽✾❁✁✮

✸✭③✁✺✽✾❁✁✮
✴✭③✁✮❀

(2)

where ①♥ is the input data to layer � (①✶ is the visible data), ❚

represents the DAN, ❥❏❃❄❅✑ ❥ is the determinant of the Jacobian

of the 1:1 mapping from ③✶ to ①✁, and ✼ is the sampling

efficiency, to be explained below.

Notice the absence of integral signs in (2) - the distribution

does not require integrating out the hidden variables, as is

necessary in other layered generative models. This is due to the

fact that the hidden variables of the DAN are deterministically

derived from the visible data, not jointly distributed. Note

also that in (2) there appears a set of reference distributions,

one for each layer. The distribution ✸✭①♥✺✽✾❁♥✮ is the maxi-

mum entropy (MaxEnt) reference distribution for layer � and

✸✭③♥✺✽✾❁♥✮ is the corresponding feature distribution1. This

reference distribution depends on ❳♥, the data range of layer

� input, which in turn depends on the activation function used

in the previous layer - note that the input (visible data) is

assumed to have been created using ❆✶✭ ✮. We consider three

data ranges: ❇❈ , ❉❈ , and ❊❈ , where ❋ represents input data

dimension of a generic layer, ❇❈ is the unlimited case, ❉❈ is

the positive quadrant (● ■ ❑▲), and ❊
❈ is the unit hypercube

(● ■ ❑▲ ■ ✻). The MaxEnt reference distribution for each

data range ❳ is given in Table I. The primary computational

challenge in computing (2) is calculating the denominator

terms ✸✭③♥✺✽✾❁♥✮. More is provided in the references [8], [9],

[10], [7], [6], [11].

Depending on the data range (see Table I) an ES might need

to be extracted from each layer input. We describe the ES for

completeness, but no ES is needed for ❊❈ , and for ❉❈ , the

ES can be incorporated into matrix ❲♥, eliminating the need

for an explicit ES. For more about the ES, please consult the

references [10], [7].

Optionally, a bias and activation function can be appended

to the DAN (bottom of Figure 1), producing feature ①❖. In this

case, the data generation process begins with the generating

distribution ✴✭①❖✮, and the activation function and bias must

be inverted. Also, equation (2) must be modified by replacing

✴✭③✁✮ with ❥❏❃✑❅◗❥ ✴✭①❖✮❙

1♣✄❱❨✆❍✠❩❨✝ is the theoretical PDF of the layer output when the layer
input is distribued according to ♣✄✟❨✆❍✠❩❨✝.

2019 27th European Signal Processing Conference (EUSIPCO)

B. PBN Asymptotic Form

It has been shown that the UMS sampling process can

be closely approximated by a network layer resembling a

sigmoid belief network [7]. To arrive at the asymptotic PBN

(see Figure 1), the UMS blocks are replaced by a nonlinear

function ❤♥ ❂ ✌�✶♥ ✭③♥✮, matrix multiplication ☛♥ ❂ ❲♥❤♥,

then generation from distributions ♣♥✭①❀ ✁✮, which are given

in Table I as a function of ❳♥. The expected value of these

distributions (given ✁) is denoted by ✕♥✭✁✮, which corresponds

to the activation functions used in the DAN at the output of

layer ✂ ✄ ☎. Interestingly, for ❯◆ , ✕♥✭✁✮ is the mean of the

truncated exponential distribution (TED), which is similar to

the sigmoid function [7]. Central to the theoretical analysis

of a PBN layer is the function ✌♥✭❤♥✮ ❂ ❲✵
♥✕✭❲♥❤♥✮✿ To

compute a layer of a PBN, this function needs to be inverted:

❤♥ ❂ ✌�✶♥ ✭③♥✮✆ which requires an iterative algorithm, but

might have no solution (See Section II-E).

C. The PBN for ❘◆ and Relationship to VAE

The VAE is currently a well-studied generative model

[12], [2]. The “variational” aspect of VAE has to do with

approximating and training the LF, but the VAE is essentially

an implementation of DLGM [2]. Thus, both PBN and VAE

are layered generative models. The main difference is that the

PBN is based on an explicit feed-forward analysis network

(the DAN), so the latent variables can be deterministically

computed from the visible data. So, once a visible data sample

has been generated by the PBN, all the hidden variables can

then be exactly recovered by a single pass of the DAN. The

VAE on the other hand is an stochastic layered generative

model, so the latent variables of the VAE are jointly distributed

with the visible data. For this reason the LF of the VAE is only

available as an integral over the hidden variables. But, this

distinction is moot because when looking at the asymptotic

form of the PBN, an approximation that is very good as has

been demonstrated [7], we see that the PBN behaves like a

traditional layered stochastic generative model.

A network layer of a DLGM is composed of an arbitrary

non-linear function followed by additive correlated noise [2].

A network layer of an asymptotic PBN, on the other hand,

is composed of a non-linear function ✌�✶♥ ✭③✮, followed by

multiplication by matrix ❲♥, then the layer output is pro-

duced by the generating distributions. Function ✌�✶♥ ✭③✮ and

the generating distributions depend on the range of the layer

output variable and are given in Table I. When ✝ ✷ ❘◆ , the

generating distribution is Gaussian, so and is implemented by

adding independent Gaussian noise2. This produces a type of

DLGM. But, the Gaussian noise in an asymptotic PBN must

be added after a linear transformation, whereas for DLGM

it is added after an arbitrary transformation. It is not clear

what this distinction means to the ultimate PDF estimation

capability, and can only be discovered by future experiments.

Note also that for the DLGM, the activation function is taken

2This can be easily extended to correlated noise by introducing a matrix
multiplification between the layers.

to be part of the “arbitrary non-linear function” , whereas in

the PBN, the activation function ✕♥✭ ✮ is defined for the dual

DAN and determines the function ✌�✶♥ ✭③✮ used in the PBN. In

holding to the MaxEnt principle, for a given data range ❳ , the

activation function ✕✭✮ is fixed, and therefore ✌�✶♥ ✭③✮ is fixed.

But, if one is willing to give up this MaxEnt distinction, there

is flexibility in choosing ✕✭✮ so long as it is invertible (for

example use softplus, not relu).

In summary, both DLGM and PBN are layered generative

networks and it is not clear from the above comparison which

structure is better or more general. It is clear, however, that the

PBN under special conditions (i.e. for ❳ ❂ ❘◆) approximates

a type of DLGM and has a closed-form LF which is especially

efficient to compute for this case (see [10] Section IV.C, page

2821). Future work is planned to compare DLGM and PBN

in practice.

D. PBN Deterministic Form

The deterministic form of the PBN is obtained from the

asymptotic form by replacing ♣♥✭①❀ ✁✮ by their expected

values ✕♥✭✁✮. Interestingly, ✕♥✭✁✮ cancels ✕�✶♥ ✭✁✮, leaving

✌�✶♥ ✭ ✮ as the only non-linearities, except at the visible layer.

This resulting PBN is a deterministic dual to the DAN, which

exactly recovers the hidden values. An arbitrary activation

function ✕♥✭✁✮ can be used as long as ✌♥✭❤♥✮ is defined

using the same function. Note that ✕♥✭✁✮ must be invertible,

so activations functions like softplus can be used, but not relu.

E. Sampling Efficiency

The sampling efficiency ✎ is the fraction of times that the

PBN successfully creates a sample of visible data and depends

on the feature generating distribution ❣✭③✮ and whether exact

(UMS) or deterministic generation is used. A sampling failure

occurs in a UMS block if the set▼♠✭③♥✆ ❡♥✮ has no members,

or in the asymptotic or deterministic PBN if ✌�✶♥ ✭③♥✮ has no

solution. When sampling fails, it is necessary to re-start the

process by drawing another feature value. Sampling efficiency,

either for UMS or for deterministic PBN, can be driven

towards 1.0 though training, as will be demonstrated below.

F. PBN Initialization and Training

In order to initialze the PBN so it has high sampling effi-

ciency, the weight matrices should be initialized by principal

component analysis (PCA) of the input data prior to the

activation function 3. Scaling and bias are then used to provide

good “activation” of ✕♥✭ ✮. In this paper, two types of PBN

training are used - deterministic auto-encoder training and

maximum likelihood (ML) training. In auto-encoder training,

the DAN is combined with the deterministic PBN to form

an auto-encoder (a clockwise circular path at the bottom of

Figure 1). Training is accomplished using back-propagation

to minimize total square reconstruction error. Note that the

parameters appear in both PBN and DAN, so the derivative

3When data is already constrained to the range ❬✞✟ ✠❪, as it is in the MNIST
corpus, it is useful to “gaussianify” the data, mapping to ✡☞ prior to PCA
analysis (See Section III-A).

2019 27th European Signal Processing Conference (EUSIPCO)

has two terms. It is critical to have high sampling efficiency

for auto-encoder training. In the experiments, ✎ approaches

very nearly 1.0 after the first training epoch, even for testing

data.

In ML training, the log of equation (2) is trained for highest

average value by gradient ascent. We used a special “uniform

assumption” training in which the optional activation function

(bottom of Figure 1) is applied to compress the data to the

range [0,1], and the feature distribution ❣✭①✸✮ is ignored.

Ignoring the feature distribution is tantamount to assuming

that ❣✭①✸✮ ❂ ✶, the uniform distribution. Interestingly, by

training this way, a network is produced that, in fact, produces

feature data ①✸ that is independent uniformly distributed - the

simplifying assumption becomes fulfilled.

III. CLASSIFICATION EXPERIMENTS

We now compare PBN with a Gaussian mixture model

(GMM) in a simple classification task.

A. Reduced MNIST Data Description

For the following experiments, just three characters “3”, “8”,

and “9”, of the MNIST handwritten data corpus were used.

Four pixel down-sampling rates were chosen: 1:1, 2:1, 3:1,

and 4:1, resulting in data dimensions of 784, 196, 100, and

49. Since MNIST pixel data is coarsely quantized in the range

[0,1], a dither was applied to the pixel values4. To create data

in ❘◆ , the inverse sigmoid function was then applied in order

to create “gaussianified” data with most pixel values in the

range -10 and 10.

B. The 1-layer PBN

We revisit the 1-layer PBN, which was previously intro-

duced [6]. The results of 1-layer PBN experiments are relevant

to determine if the PBN should be exended to a second layer.

In a multi-layer PBN, a given layer acts as a PDF model for

the features of the up-stream layer. So, it seems that there is no

advantage to adding a layer to a PBN if a GMM works better

than the added layer. The idea, then is to test a 1-layer PBN

against a GMM as a function of dimension. This experiment is

data-set dependent, so the results here apply only to MNIST.

As a performance benchmark, the GMM was applied to the

“gaussianified” data in ❘◆ , using both diagonal (GMM-D),

and full (GMM-F) covariance matrices 5. A separate 1-layer

PBN was initialized using PCA, then trained for each data

class to maximize the mean log-likelihood using gradient

ascent with “ADAM” optimization and L2 regularization using

“uniform assumption” training (Section II-F). After training,

the final activation function was removed, then ❣✭③�✮ was

modeled as a GMM. For ✁ ❂ ✹✾❀ ✶✵✵❀ ✶✾✻❀ ✼✽✹, the number

of hidden units (columns of matrix ❲) were 12, 16, 30, and

34, respectively.

4For pixel values above 0.5, a small exponential-distributed random value
was subtracted, but for pixel values below 0.5, a similar random value was
added.

5To avoid singularities, the diagonal elements of the covariance matrices
were multiplied by the factor ✂✄ ✰ ✍☎, where ✍ ✆ 0.3, 0.3, 0.5, and 0.6 for
dimensions 49, 100, 192, and 784, respectively.

Results of the experiment are shown in Figure 2. The PCA-

initialized PBN, with no further training are reported as “PBN-

P”, and with training as “PBN-G”. When comparing “PBN-

P” with “PBN-G”, we can conclude that ML training greatly

improves a PBN. This means that the PDF model offered

by a 1-layer PBN is more than a just a re-packaged type of

Gaussian model or PCA. The next observation is that the PBN

performs better than GMM-F above ✁ ❂ ✶✵✵. Both GMM-F

10
2

10
3

10
0

10
1

GMM−F

PBN−G

PBN−P

PBN−2−G

PBN−H

PBN−A−E

GMM−D

Dimension N

C
la

ss
ifi

ca
tio

n
 E

rr
o
r

%
10

2
10

3

10
0.4

10
0.5

GMM−F

PBN−G

PBN−P

PBN−2−G

PBN−H

GMM−D

Dimension N

L
o
g
 L

ik
e
lih

o
o
d
 (

P
e
r

P
ix

e
l)

Fig. 2. Model comparison as a function of data dimension.

and PBN can model pixel correlation, GMM-F explicitly using

the covariance matrices, and PBN implicitly by decorrelating

the features, as was noted at the end of Section II-F. But,

PBN requires ▼✁ parameters, versus the ▼✁✷ parameters

required for the GMM. This may explain the advantage of PBN

above ✁ ❂ ✶✵✵. The average sampling efficiency for PBN-

G was 0.72, 0.85, 0.77, and 0.52 for ✁ ❂ ✹✾❀ ✶✵✵❀ ✶✾✝❀ ✼✽✹,

respectively. The worst case change in per-pixel log-likelihood,

is 0.007, so sampling efficiency in Figure 2 can be essentially

ignored.

C. Multi-layer PBN

The 1-layer PBNs for ✁ ❂ ✶✾✻ and ✼✽✹ were extended to a

second layer with ✶✻ and ✶✽ hidden units, respectively. The 2-

layer PBNs were then trained with an assumption of uniform

distribution for ❣✭①✸✮, then the final activation function was

removed and GMM was used to model the final feature PDF

❣✭③✷✮. Sampling efficiencies were 0.55 and 0.70, respectively,

also negligible. Performance is shown in Figure 2 as “PBG-2-

G” and shows worse performance with respect to 1-layer PBN-

G. This could have been predicted based on Figure 2 because

the feature dimension is much less than ✶✵✵. Extending the

PBN to a second layer would only be effective if the first

layer feature dimension is much larger.

IV. AUTO-ENCODER (A-E) EXPERIMENTS

In the next experiment, a multi-layer deterministic PBN

together with the DAN are used as an A-E and compared

with a standard A-E network of the same structure. The full

✝✽✞✝✽ (✁ ❂ ✼✽✹) data was used. Separate A-Es were trained

2019 27th European Signal Processing Conference (EUSIPCO)

Nodes Act Type E-Train E-Test Class

32-12 T A-E 7.40 10.39 1.94%

32-12 S A-E 6.73 10.79 2.97%

32-12 T PBN 8.63 9.04 1.27%

36-16 T A-E 5.84 8.21 2.57%

36-16 S A-E 5.26 8.26 2.51%

36-16 T PBN 6.96 7.40 1.70%

32-16-9 P A-E 8.27 15.3 4.4%

32-16-9 P PBN 9.95 11.25 0.90%

TABLE II
TOTAL SQUARE ERROR FOR AUTO-ENCODER TASK. ACTIVATION

FUNCTIONS (ACT) ARE TED (T), SIGMOID (S) AND SOFTPLUS (P)

.

on each data class to minimize total square error by back-

propagation. ADAM optimization and L2 regularization was

used for both network types. TED (T), sigmoid (S) and softplus

(P) activation functions were tried. The average squared error

was measured for testing and training data and is listed in

Table II. Although the conventional A-E attained a lower

squared error on the training data, it fared much worse on

the test data. In contrast, the PBN had similar squared error

on both sets, significantly out-performing the standard A-E -

which can probably be attributed to (a) that fact that the PBN

uses the same weights for reconstruction and analysis, and

thereby implements the same task with half the parameters,

and (b) the reconstruction (PBN) is the perfect complement

to the analysis network (DAN). Using L2-regularization for

conventional A-E did not change this. The A-E performance

for TED and sigmoid was similar, but training took longer

for TED. Sampling efficiency for PBN was 100 percent (no

samples that failed reconstruction) for training, and about

99.9% (typically 1 sample or less failed) on the test data. The

good generalization of the PBN A-E suggests using it as a

classifier based on minimum reconstruction error, which we

tried. The results are shown in Table II in column “Class”.

PBN performed significantly better than A-E, attaining a very

respectable 0.9%, which handily out-performs the standard

PBNs in Figure 2 (denoted by “PBN A-E”).

The deterministic PBN is also useful to generate entirely

synthetic data, In Figure 3, examples were generated by

training a GMM on the features (i.e. output of the DAN), then

passing synthetic features through the PBN. The configuration

“32-16-9” with softplus activation was used. The synthetic

samples are sorted in order of decreasing likelihood (starting

from top left), demonstrating the a benefit of a tractable likeli-

hood function. The quality of these samples suggests using the

deterministic PBN in a generative adversarial network (GAN)

- but differing from a standard GAN in the posession of a

tractable LF.

V. CONCLUSIONS

In this paper, a multi-layer PBN has been described, in

its standard, asymptotic, and deterministic forms. Experiments

comparing a 1-layer PBN with a GMM on a reduced subset

of MNIST show that PBN out-performs GMM only above a

dimension of about 100, which would suggest using a 2-layer

Fig. 3. Data synthesized from determinisic PBN and sorted in oder of
decreasing likelihood value.

PBN when the output dimension of the first layer is large. This

paper also described a deterministic multi-layer PBN for the

first time and it has been experimentally found to be superior

to a standard auto-encoder when generalizing to test data both

in terms of reconstruction error and classifier performance.

REFERENCES

[1] V. Vapnik, The Nature of Statistical Learning. Springer, 1999.
[2] D. J. Rezende, S. Mohamed, and D. Wierstra, “Stochastic backprop-

agation and approximate inference in deep generative models,” in
Proceedings of the 31st International Conference on Machine Learning

(E. P. Xing and T. Jebara, eds.), vol. 32 of Proceedings of Machine

Learning Research, (Bejing, China), pp. 1278–1286, PMLR, 22–24 Jun
2014.

[3] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Advances in Neural Information Processing Systems 27 (Z. Ghahramani,
M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, eds.),
pp. 2672–2680, Curran Associates, Inc., 2014.

[4] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm
for deep belief nets,” in Neural Computation 2006, 2006.

[5] R. Salakhutdinov and I. Murray, “On the quantitative analysis of deep
belief networks,” Proceedings of the 25th International Conference on

Machine Learning (ICML), 2008.
[6] P. M. Baggenstoss, “On the duality between belief networks and feed-

forward neural networks,” IEEE Transactions on Neural Networks and

Learning Systems, pp. 1–11, 2018.
[7] P. M. Baggenstoss, “Uniform manifold sampling (UMS): Sampling

the maximum entropy pdf,” IEEE Transactions on Signal Processing,
vol. 65, pp. 2455–2470, May 2017.

[8] P. M. Baggenstoss, “The PDF projection theorem and the class-specific
method,” IEEE Trans Signal Processing, pp. 672–685, March 2003.

[9] S. M. Kay, A. H. Nuttall, and P. M. Baggenstoss, “Multidimensional
probability density function approximations for detection, classification,
and model order selection,” IEEE Transactions on Signal Processing,
vol. 49, pp. 2240–2252, Oct 2001.

[10] P. M. Baggenstoss, “Maximum entropy PDF design using feature density
constraints: Applications in signal processing,” IEEE Trans. Signal

Processing, vol. 63, June 2015.
[11] P. M. Baggenstoss, “Evaluating the RBM without integration using pdf

projection,” in Proceedings of EUSIPCO 2017, Island of Kos, Greece,
Aug 2017.

[12] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep learning.
Cambridge, MA: MIT press, 2016.

2019 27th European Signal Processing Conference (EUSIPCO)

