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Abstract—An efficient phase-based acoustic detection and
tracking algorithm for drones is presented. The algorithm sep-
arately tracks the time difference of arrival (TDOA) of the
incoming signal with respect to microphone pairs based on
the phase in the discrete Fourier transform (DFT) bins. The
direction of arrival (DOA) of the drone is determined by forming
a solution curve corresponding to each TDOA, then clustering
the curve intersections. The algorithm avoids the computation-
ally expensive grid-search over DOA, so is significantly more
efficient than beamforming. The proposed algorithm and the
maximum likelihood (ML) processor (beamformer) are compared
in simulated and real data scenarios. Using simulated data, the
ML estimator is shown to agree with the Cramér-Rao lower
bound (CRLB) and the proposed algorithm is shown to approach
the performance of ML at higher SNR. In real data scenarios,
the phase-based algorithm implemented with simple alpha-beta
TDOA trackers consistently tracked the target through difficult
maneuvers at short and long range, showing no degradation with
respect to the beamformer. Other potential advantages include
robustness against interference and ability to create phase-based
spectrograms for classification.

I. INTRODUCTION

A. Motivation and Prior Work

Due to the increasing use (and misuse) of unmanned aerial

vehicles (UAV, or drones), there is increasing interest in sys-

tems that can detect, track, classify, and warn of approaching

drones. Acoustic systems have advantages over infra-red, radar,

and electro-optic systems for which drones present weak

signatures [1]. While some specialized systems are designed

for sound visualization in close-range scenarios [2], there is a

need for efficient systems that can locate drones at long range

in environments with interfering sources. Because distance to

the drone can be estimated by triangulation of direction of

arrival (DOA) estimates from multiple arrays, there is a need

for inexpensive systems that measure DOA only. While most

proposed systems are based on classical beamforming [1], [3],

[4], there is the potential for efficient algorithms based on

time difference of arrival (TDOA) estimation [5], [6], [7]. Of

particular importance is the avoidance of the computationally

expensive grid-search over DOA. For further increases in

robustness and efficiency, time delay estimation can be based

on phase difference between the signal at two sensors at a

given frequency. For exponential-phase signal models, phase-

based algorithms approximate the ML estimators [8] and can

1This research was funded by German BMBF in the AMBOS project under
grant 13N14269.

achieve the CR Bound at higher SNR [9]. Using phase can

increase robustness for reasons that will be discused.

B. Overview of Approach

A phase-based DOA tracking algorithm is proposed in

this paper and is illustrated in Figure 1 for a simplified

3-microphone system. The microphone time-series data is

segmented into overlapped time windows, then processed by

discrete Fourier transform (DFT). An initial time difference

of arrival (TDOA) estimate is made for each microphone pair

using classical frequency-domain cross-correlation. Deviations

from the initial TDOA estimate are tracked by comparing the

phase difference for two microphones in a given DFT bin with

the predicted phase difference to arrive at a phase error. The

phase errors are combined using a novel frequency weighting

into a robust estimate of TDOA error and then processed by

the TDOA tracker to develop a consistent, phase locked track

of the TDOA. To localize the drone, the locus of all points

consistent with a measured TDOA between a pair of sensors

is projected onto a circle on an imaginary distant sphere in

3-dimensional space. The intersections of these circles are

clustered into a global DOA estimate (azimuth and elevation),

and refined using some iterations of Newton’s method. In

addition to efficiency, TDOA tracking and DOA clustering both

contribute to robustness for reasons to be discussed in Sections

II-C and III. To the best of our knowledge the TDOA-tracking

in has not been applied to the drone detection task before.

II. ALGORITHM DESCRIPTION

A. Maximum Likelihood (ML) Processor (Beamformer)

The ML bearing estimator was used as a performance

benchmark. The beamformer arises as the implementation of

the ML bearing estimator and attains the Cramér-Rao lower

bound (CRLB) in theory. The assumed signal model, the ML

processor, and the CRLB are detailed in appendix A.

B. TDOA Estimation

DOA can be measured indirectly by first measuring the

time delay, called time difference of arrival (TDOA), at each

microphone pair (There are
M(M−1)

2 different pairs in an

M -microphone array). To initialize the TDOA estimate, we

used classical frequency-domain cross-correlation, taking care

to prevent circular wrap-around by zero-padding. A band-

pass filter was applied before the final inverse FFT. TDOA
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Fig. 1: System block-diagram for simplified 3-microphone scenario. Dotted lines indicate the TDOA initialization. Thick lines

indicate values that exist at each frequency bin.

is obtained by peak-picking within the allowable range given

the array geometry.

The initial TDOA estimate can be updated using phase

measurements. Let Xm,i be DFT bin i from microphone m.

Then, for microphones l and m, Xm,i ≃ Xl,i e−j2πiτlmfsN ,

where N is the DFT size, fs is the sample rate, and τlm
is the true time-delay between sensors l and m. Given an

initial TDOA estimate τ̂lm, we form the following phase

measurement φlm
i = angle(Xl,i X̄m,i e−j2πiτ̂lmfsN ) which

is related to the TDOA error δlm = (τlm − τ̂lm) by

φlm
i ≃

2πifs
N

(τlm − τ̂lm). (1)

By inverting (1), we get an ideally unbiased estimate of TDOA

error for each DFT bin:

δlmi =
N

2πifs
φlm
i . (2)

These frequency-specific TDOA error estimates are com-

bined into an ideally unbiased measurement of TDOA error

using the formula

δlm =

∑N/2
i=0 wiδ

lm
i

∑N/2
i=0 wi

. (3)

where wi = iρ e−(φlm
i )2/(2σ2

w). The term e−(φlm
i )2/(2σ2

w),

where σ2
w is a phase variance parameter, is used to apply a

lower weight to frequencies where the phase error is high,

presumably because of noise, interference, or drone dynamics.

A value of σ2
w = .25 was used. The term iρ is used to

control the frequency weighting of the phase measurements.

Notice that (2) has a frequency weighting of 1/i, so (3) has

a combined frequency weighting of iρ−1. If (1) is seen as a

function of frequency i, then (τlm − τ̂lm) is proportional to

the slope. To approximate the slope using linear regression,

which also provides the approximate ML estimate of time-

delay [8], an exponent of ρ = 2 would be required. But, the

dynamics of the drone produce larger unknown phase errors at

higher frequencies where sound absorption is greater (and SNR

lower), suggesting a lower value of ρ. We found experimentally

that ρ = 0.5 is a good compromise, but it is clearly application

dependent since it is a function of signal spectrum, background

noise, target dynamics, sound absorption, etc.

C. TDOA tracking

We used the well-known alpha-beta tracker [10], [11], to

track the TDOA error for microphone pair l,m, δlm. Details

are provided in appendix B. Tracking TDOA based on phase

errors has some advantages. As long as the TDOA is tracked, it

remains phase-locked because any bias in the TDOA estimate

results in an ever-accumulating phase error. Also, track loss can

be easily detected (so that the tracker can be re-intialized), by

monitoring average phase error, or by detecting if there are no

correlator peaks near the tracked TDOA. In the ML processor

(beamformer), an interfering source can bias or even mask the

local maximum due to the desired target. But, when tracking

TDOA based on phase, the energy from interfering signals

appearing in a DFT bin, no matter how strong, will likely

produce a random (uniformly distributed) phase error because

there is no correlation between the predicted phase (based on

the tracked TDOA) and the interfering signal. This means that

as long as the majority of the DFT bins with low phase error

are due to the desired source, tracking will continue and not

be interrupted by the interfering source.

III. TIME-DELAY BASED DOA ESTIMATION

A geometric approach is employed to estimate the DOA

in form of azimuth and elevation (θ1, θ2). Every sensor pair

in conjunction with a TDOA estimate induces a hyperbolic

surface containing all possible points which would produce

the measured TDOA. If all the surfaces are intersected with

a sphere of some radius R large enough, circles are formed

on this sphere1. If the intersections of each pair of circles

are calculated, a cloud of points that are consistent with at

least two measured time delays is obtained. The core idea is

1Assuming the center of the two the sensors coincides with the array center.
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with an associated delay τm(θ), m = 1, . . . ,M , where θ is

the target DOA parameter (azimuth and elevation angles), plus

some independent Gaussian noise of variance σ2
n. Let there

be N time samples of each microphone at sample rate fs.

Let these N samples be transformed to the frequency domain

by discrete Fourier transform (DFT). Then the frequency-

domain signals at frequency bin i and microphone m can

be written Xi,m = Si e−
2πfsτm(θ)i

N + ui,m, where Si is the

source process at DFT bin i and ui,m is the independent

noise (independent in time and spatially across microphones).

Because all quantities are real Gaussian processes, Xi,m is a

complex Gaussian random variable and the signal and noise

at different frequency bins are independent and uncorrelated,

but correlated across microphones at a given frequency. Let

X stand for the collection of all frequency-domain values

X = {Xi,m}. Then X has distribution

log p(X) = −

N/2
∑

i=0

{

M log(π) +X
∗
iR

−1
i Xi + log |Ri|

}

,

(4)

where Xi is the M × 1 vector of complex DFT bin values at

frequency bin i and the complex frequency-domain covariance

matrix is Ri = E {XiX
∗
i } = Nσ2

seie
∗
i + Nσ2

nI, where

ei =
[

e−
2πfsτ1(θ)i

N , e−
2πfsτ2(θ)i

N . . . e−
2πfsτM (θ)i

N

]′
. Note that

the variance parameters can be a function of frequency bin

i, although for notational simplicity, the index is omitted. The

inverse can be expressed as R−1
i = 1

Nσ2
n
I−

σ2
s

Nσ2
n(Mσ2

s+σ2
n)
eie

∗
i

nd the determinant can be expressed as |Ri| = (NMσ2
s +

Nσ2
n)(Nσ2

n)
(M−1). Therefore, (4) can be rewritten

log p(X) = C −

N/2
∑

i=0

{

1

Nσ2
n

|Xi|
2 −

σ2
s |e

∗
i (θ) Xi|

2

Nσ2
n(Mσ2

s + σ2
n)

}

,

(5)

where C is independent of X and θ.

To estimate the target position parameter θ by maximum

likelihood, one must maximize (5) over θ. The conventional

beamformer arises because the maximization can be accom-

plished by maximizing the term B(θ) =
∑N/2

i=0 |e∗i (θ) Xi|
2

over θ which is tantamount to steering the beam to maximize

output power.

The lower bound on the error variance for parameter θ is

given by the Cramér-Rao lower bound. The derivative of (5)

with respect to a component θ of θ is

∂ log p(X)

∂θ
=

N/2
∑

i=0

2σ2
s Re

{

e
θ∗
i Xi X

∗
i ei

}

Nσ2
n(Mσ2

s + σ2
n)

,

where θ in the exponent indicates first derivative. From this

expression, the Fisher’s information matrix for θ1, θ2 can be

derived:

Iθ1,θ2 =

N/2
∑

i=0

2σ2
s Re

{

e
θ1∗
i Rie

θ2
i + e

θ1θ2∗
i Riei

}

Nσ2
n(Mσ2

s + σ2
n)

. (6)

The CRLB is then the inverse C(θ1, θ2) = I
−1
θ1,θ2

.

B. Alpha-Beta Tracker

A separate TDOA tracker is used for each sensor pair. In

the following, the tracker is described for an arbitrary sensor

pair.
1) State Variables: State variables include the TDOA (time

delay) τ and the time-delay rate of change v (in seconds of

delay per second) : x = [τ, v]′.
2) Initialization: The state variable τ is initialized to

the TDOA in seconds obtained by peak-picking the cross-

correlation. The velocity v is set to zero.
3) Time Update: Let there be a state variable estimate

at time update n − 1, based on data up to and including

time update n − 1 denoted by x̂n−1|n−1. To extrapolate

this estimate to time update n, the linear time-update is

x̂n|n−1 = A x̂n−1|n−1, where the time update martrix is given

by A =

[

1 K/fs
0 1

]

, where fs is the input data sampling

rate, K is the number of new input samples processed in each

time update, and K/fs is the amount of time that has passed

since the last time update.
4) Alpha-Beta Measurement Update: To update the alpha-

beta filter, we use τn|n = τn|n−1+αδ, and vn|n = vn|n−1+βδ,

where δ is from (3) , α = .5 and β = 0.8 2−α2−2
√
1−α2

α2 . This

value of β produces critical damping [10], [11].
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