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Abstract—An efficient phase-based acoustic detection and
tracking algorithm for drones is presented. The algorithm sep-
arately tracks the time difference of arrival (TDOA) of the
incoming signal with respect to microphone pairs based on
the phase in the discrete Fourier transform (DFT) bins. The
direction of arrival (DOA) of the drone is determined by forming
a solution curve corresponding to each TDOA, then clustering
the curve intersections. The algorithm avoids the computation-
ally expensive grid-search over DOA, so is significantly more
efficient than beamforming. The proposed algorithm and the
maximum likelihood (ML) processor (beamformer) are compared
in simulated and real data scenarios. Using simulated data, the
ML estimator is shown to agree with the Cramér-Rao lower
bound (CRLB) and the proposed algorithm is shown to approach
the performance of ML at higher SNR. In real data scenarios,
the phase-based algorithm implemented with simple alpha-beta
TDOA trackers consistently tracked the target through difficult
maneuvers at short and long range, showing no degradation with
respect to the beamformer. Other potential advantages include
robustness against interference and ability to create phase-based
spectrograms for classification.

I. INTRODUCTION
A. Motivation and Prior Work

Due to the increasing use (and misuse) of unmanned aerial
vehicles (UAV, or drones), there is increasing interest in sys-
tems that can detect, track, classify, and warn of approaching
drones. Acoustic systems have advantages over infra-red, radar,
and electro-optic systems for which drones present weak
signatures [1]. While some specialized systems are designed
for sound visualization in close-range scenarios [2], there is a
need for efficient systems that can locate drones at long range
in environments with interfering sources. Because distance to
the drone can be estimated by triangulation of direction of
arrival (DOA) estimates from multiple arrays, there is a need
for inexpensive systems that measure DOA only. While most
proposed systems are based on classical beamforming [1], [3],
[4], there is the potential for efficient algorithms based on
time difference of arrival (TDOA) estimation [5], [6], [7]. Of
particular importance is the avoidance of the computationally
expensive grid-search over DOA. For further increases in
robustness and efficiency, time delay estimation can be based
on phase difference between the signal at two sensors at a
given frequency. For exponential-phase signal models, phase-
based algorithms approximate the ML estimators [8] and can
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achieve the CR Bound at higher SNR [9]. Using phase can
increase robustness for reasons that will be discused.

B. Overview of Approach

A phase-based DOA tracking algorithm is proposed in
this paper and is illustrated in Figure 1 for a simplified
3-microphone system. The microphone time-series data is
segmented into overlapped time windows, then processed by
discrete Fourier transform (DFT). An initial time difference
of arrival (TDOA) estimate is made for each microphone pair
using classical frequency-domain cross-correlation. Deviations
from the initial TDOA estimate are tracked by comparing the
phase difference for two microphones in a given DFT bin with
the predicted phase difference to arrive at a phase error. The
phase errors are combined using a novel frequency weighting
into a robust estimate of TDOA error and then processed by
the TDOA tracker to develop a consistent, phase locked track
of the TDOA. To localize the drone, the locus of all points
consistent with a measured TDOA between a pair of sensors
is projected onto a circle on an imaginary distant sphere in
3-dimensional space. The intersections of these circles are
clustered into a global DOA estimate (azimuth and elevation),
and refined using some iterations of Newton’s method. In
addition to efficiency, TDOA tracking and DOA clustering both
contribute to robustness for reasons to be discussed in Sections
II-C and III. To the best of our knowledge the TDOA-tracking
in has not been applied to the drone detection task before.

II. ALGORITHM DESCRIPTION
A. Maximum Likelihood (ML) Processor (Beamformer)

The ML bearing estimator was used as a performance
benchmark. The beamformer arises as the implementation of
the ML bearing estimator and attains the Cramér-Rao lower
bound (CRLB) in theory. The assumed signal model, the ML
processor, and the CRLB are detailed in appendix A.

B. TDOA Estimation

DOA can be measured indirectly by first measuring the
time delay, called time difference of arrival (TDOA), at each
microphone pair (There are % different pairs in an
M-microphone array). To initialize the TDOA estimate, we
used classical frequency-domain cross-correlation, taking care
to prevent circular wrap-around by zero-padding. A band-
pass filter was applied before the final inverse FFT. TDOA
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Fig. 1: System block-diagram for simplified 3-microphone scenario. Dotted lines indicate the TDOA initialization. Thick lines

indicate values that exist at each frequency bin.

is obtained by peak-picking within the allowable range given
the array geometry.

The initial TDOA estimate can be updated using phase
measurements. Let X, ; be DFT bin ¢ from microphone m.
Then, for microphones I and m, X,,; ~ X;; e~ I2miTm fs N |
where N is the DFT size, f; is the sample rate, and 7y,
is the true time-delay between sensors ! and m. Given an
initial TDOA estimate 7;,,, we form the following phase
measurement ¢l = angle(X;; X, ; e /2 7mfsN) which

is related to the TDOA error 6'™ = (T, — Tim) by
27 f .
o = 2y — 1) m

By inverting (1), we get an ideally unbiased estimate of TDOA
error for each DFT bin:

lm __ lm
9; =5 fg =% 2

These frequency-specific TDOA error estimates are com-
bined into an ideally unbiased measurement of TDOA error
using the formula

= 7]\7/2: : €)

where w; = i? e~(#")?/(20%) The term e~ (¢:")*/(20%),

where o2 is a phase variance parameter, is used to apply a
lower weight to frequencies where the phase error is high,
presumably because of noise, interference, or drone dynamics.
A value of 02 = .25 was used. The term i” is used to
control the frequency weighting of the phase measurements.
Notice that (2) has a frequency weighting of 1/, so (3) has
a combined frequency weighting of i#~!. If (1) is seen as a
function of frequency i, then (74, — 7i,) is proportional to
the slope. To approximate the slope using linear regression,
which also provides the approximate ML estimate of time-
delay [8], an exponent of p = 2 would be required. But, the
dynamics of the drone produce larger unknown phase errors at
higher frequencies where sound absorption is greater (and SNR

lower), suggesting a lower value of p. We found experimentally
that p = 0.5 is a good compromise, but it is clearly application
dependent since it is a function of signal spectrum, background
noise, target dynamics, sound absorption, etc.

C. TDOA tracking

We used the well-known alpha-beta tracker [10], [11], to
track the TDOA error for microphone pair I, m, §'™. Details
are provided in appendix B. Tracking TDOA based on phase
errors has some advantages. As long as the TDOA is tracked, it
remains phase-locked because any bias in the TDOA estimate
results in an ever-accumulating phase error. Also, track loss can
be easily detected (so that the tracker can be re-intialized), by
monitoring average phase error, or by detecting if there are no
correlator peaks near the tracked TDOA. In the ML processor
(beamformer), an interfering source can bias or even mask the
local maximum due to the desired target. But, when tracking
TDOA based on phase, the energy from interfering signals
appearing in a DFT bin, no matter how strong, will likely
produce a random (uniformly distributed) phase error because
there is no correlation between the predicted phase (based on
the tracked TDOA) and the interfering signal. This means that
as long as the majority of the DFT bins with low phase error
are due to the desired source, tracking will continue and not
be interrupted by the interfering source.

III. TIME-DELAY BASED DOA ESTIMATION

A geometric approach is employed to estimate the DOA
in form of azimuth and elevation (61, 65). Every sensor pair
in conjunction with a TDOA estimate induces a hyperbolic
surface containing all possible points which would produce
the measured TDOA. If all the surfaces are intersected with
a sphere of some radius R large enough, circles are formed
on this sphere!. If the intersections of each pair of circles
are calculated, a cloud of points that are consistent with at
least two measured time delays is obtained. The core idea is

! Assuming the center of the two the sensors coincides with the array center.
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Fig. 2: Example with 28 sensor pairs, i.e. all pairs of an 8
element array.

that these points form a cluster on the sphere somewhere in
direction of the arriving sound. Outliers caused by interference
that do not belong to the main cluster will not bias the main
cluster center. The cluster can be extracted using conventional
clustering algorithms, such as K-means or DBSCAN[12], and
its geometric center be used to calculate a DOA. An example
of this can be seen in Figure 2, where the circles and the
intersections of the largest cluster are drawn.

IV. SIMULATIONS
A. Stationary Target

For comparison with the classical method and the CRLB, a
stationary simulated target was employed. Data was generated
in the frequency domain according to the assumed signal model
(see appendix A). Figure 3 shows the standard deviation of
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Fig. 3: Comparison of angular standard deviation to CRLB.

azimuth and elevation estimates, computed by maximizing (5)
using Newton iterations. For later comparison with TDOA
tracking, the standard deviation was computed once with
Hanning weighting and once without. The target was simulated
to appear at 6; = 50°,65 = 30°, and the results computed
using 100 independent runs. It can be concluded that the
conventional processor with Newton iterations to refine DOA
does indeed achieve the CRLB. Hanning weighting can be
seen to reduce the effective number of samples, and therefore
increases the resulting error. In the next experiment, estimation
error will be reduced again by incoherent averaging over time,
and used as a benchmark for evaluating the proposed approach.

The variance between the ML DOA estimator and the
proposed phase-based method method is compared in Figure 4.
A simple alpha-beta tracker was applied to the ML estimates
so as to result in a fairer comparison with TDOA tracking.
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Fig. 4: Comparison of azimuth and elevation standard deviation

of TDOA-Tracking to tracked Beamformer.

It can be seen that over the complete SNR range, we do not
lose more than about 2.5 degrees in standard deviation when
using time-delay tracking as opposed to the tracked maximum
likelihood estimate. Furthermore at high SNR the difference in
negligible. Additionally, the CRLB is plotted to confirm that
through tracking we can achieve super-efficiency.

V. REAL DATA RESULTS

Data was acquired from an array consisting of M = 10
microphones arranged on a 35 cm diameter cylinder, with a
sample rate of 25 kHz. A band pass filter of 500Hz - 12
kHz was applied in the frequency domain. Ground-truth was
obtained by recording the GPS position of the drones.

Figure 5 shows the application of TDOA tracking and
Beamforming/ML on real world data. The drone flew in a
structured pattern, flying twice past the array (see dips in
elevation at 180 and 285 seconds) out to about 100 meters. For
the ML approach, the BF-function was computed on a grid of
pre-formed beams spaced 2 degrees in azimuth and 1 degree in
elevation, and incoherently integrated over one second. Local
maxima were then detected and refined by Newton iterations.
The global maximum was plotted without tracking.

On the plot can be seen the DOA estimates of the proposed
method (dots), the global maximum DOA for ML (O’s), and
the ground truth (X’s). Both the ML and the proposed method
tracked the drone consistently throughout the exercise 2. A
quantitative comparison on real data could not be made because
the differences between ML and TDOA tracking were smaller
than errors caused by bias and delay of ground-truth data.

Note that in Figure 5, the variance in elevation is larger than
the variance in azimuth. This is likely a result of array geom-
etry that causes varying DOA accuracy and ground reflections
which cause ambiguities in elevation. Also there is an offset in
elevation which is mainly due to a mismatch in assumed array
height and actual height of the array at the time of recording.

The computational time of the proposed method was 22
times faster than the ML processor. This primarily comes from
the fact that ML requires a computationally expensive grid-
search over DOA.

2Using detection distances provides just a rough idea of the algorithm’s
performance. Actual detection range is influenced by environmental factors
such as background noise, the sound intensity of the drone, and microphone
characteristics. To evaluate the proposed method, we compare the detection
performance to the optimum (ML-) estimator.
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Fig. 5: Real data results. Azimuth, elevation (0 is straight up, 90 is horizon) and distance as a function of time. Key: (X) ground

truth, (.) proposed phase-based algorithm, (O) ML/BF.

VI. ANALYSIS AND CONCLUSIONS

The above results demonstrate the feasability of the proposed
method in tracking drones in a real-workd scenario with no
discernable loss of performance with respect to ML, but an
order of magnitude reduced computational load. In addition
to computational efficiency, operating using phase offers the
potential for robust behavior and, as a side benefit, stable
features for classification, as will be explained. Note that the
ML processor is linear, making no “hard decisions™ until the
last step when the DOA is peak-picked and where interference
can bias the location of the main peak or produce a larger
interference peak’. On the other hand, the simpler phase-based
TDOA tracker makes many hard decisions early in the process-
ing stream, where the “safety in numbers” principle applies.
Even if some microphone pairs track the wrong TDOA peak,
the resulting false circle intersection points are not likely to fall
in or bias the main DOA cluster. And, by estimating TDOA
error using only DFT bin phase, a “hard decision”, a good
TDOA estimate results as long as the majority of DFT bins
produce a target-derived phase error which is unbiased in the
long run due to phase-locking. A side benefit of interference-
rejection property of TDOA tracking using DFT bin phase
(See Section II-C) is the ability to form “phase spectrograms”,
a potentially stable feature for classifying drones. Figure 6
illustrates such a spectrogtam created by plotting the function
e=%i/ "i, where ¢; is the phase error at DFT bin ¢ (see eq. 1),
over six seconds of the TDOA track at one microphone pair
and smoothing over time. Dark areas indicate low phase error.

3These errors can be handled by sophisticated tracking algorithms that are
outside the scope of this paper.

Clear narrow band lines from the drone’s motors can be seen.
Spectral lines from interfering signals will be rejected due to
the lack of correlation with the target predicted phase.
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Fig. 6: Typical Phase Spectrogram.

In conclusion, we have demonstrated that phase-based
TDOA tracking is sub-optimal, but loses only about two de-
grees or less of accuracy. DOA estimation is made significantly
more computationally efficient. In real data scenarios, it is
shown to track the drone consistently throughout a difficult
exercise. Phase-based TDOA tracking offers the potential for
interference rejection and robustness with the side benefit of
an interference-free phase spectrogram for classification.

APPENDIX

A. Theoretical Analysis and CRLB

For theoretical analysis, it is assumed that there is a single
target source whose signal is a sequence of independent
Gaussian random variables (a white Gaussian process) with
variance 2. Let there be M microphones receiving this source
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with an associated delay 7,,,(8), m = 1,..., M, where 0 is
the target DOA parameter (azimuth and elevation angles), plus
some independent Gaussian noise of variance o2. Let there
be N time samples of each microphone at sample rate f,.
Let these N samples be transformed to the frequency domain
by discrete Fourier transform (DFT). Then the frequency-
domain signals at frequency bin ¢ and microphone m can
be written X; ,, = 5; e‘w%m(e)l + Ujm, Where S; is the
source process at DFT bin ¢ and wu;,, is the independent
noise (independent in time and spatially across microphones).
Because all quantities are real Gaussian processes, X; ,, is a
complex Gaussian random variable and the signal and noise
at different frequency bins are independent and uncorrelated,
but correlated across microphones at a given frequency. Let
X stand for the collection of all frequency-domain values
X = {Xim}. Then X has distribution

N/2
logp(X) = =Y {Mlog(r) + X;R;'X; + log R},
i=0
“
where X, is the M x 1 vector of complex DFT bin values at

frequency bin ¢ and the complex frequency-domain covariance
matrix is R; = £{X;X}} = NoZe;e; + No2I, where

_ 2mfsTi(8)i  2mfsTo(6)i 2nfeTpr(0)i
e = |e N e N ...€ N . Note that
the variance parameters can be a function of frequency bin

1, although for notational simplicity, the index is ognitted. The
1 o *
~Noz - Nozarsrrezy @il
nd the determinant can be expressed as |R;| = (NMo? +
No2)(No2)M=1) Therefore, (4) can be rewritten

1 |X‘|2— 03|e:(0)X1‘2
No2™ No2(Mo2+02) "

inverse can be expressed as Ri_1 =

N/2
logp(X) =C =
=0

&)
where C' is independent of X and 6.

To estimate the target position parameter 8 by maximum
likelihood, one must maximize (5) over 8. The conventional
beamformer arises because the maximization can be accom-
plished by maximizing the term B(0) = vaz/g lex (0) X;|?
over @ which is tantamount to steering the beam to maximize
output power.

The lower bound on the error variance for parameter 6 is
given by the Cramér-Rao lower bound. The derivative of (5)
with respect to a component € of 6 is

0log p(X)

L 202 Re {ef* X; Xje;}

00 — Noi(Mo2+02)

where 6 in the exponent indicates first derivative. From this
expression, the Fisher’s information matrix for 6;,65 can be
derived:

N/2 202 Re {ef "Riel? + el " Rye; |

I = . 6
o =2 NoZ(Mo? + 02) ©

The CRLB is then the inverse C(61,63) = 1671{92.

B. Alpha-Beta Tracker

A separate TDOA tracker is used for each sensor pair. In
the following, the tracker is described for an arbitrary sensor
pair.

1) State Variables: State variables include the TDOA (time
delay) 7 and the time-delay rate of change v (in seconds of
delay per second) : x = [, v]".

2) Initialization: The state variable 7 is initialized to
the TDOA in seconds obtained by peak-picking the cross-
correlation. The velocity v is set to zero.

3) Time Update: Let there be a state variable estimate
at time update n — 1, based on data up to and including
time update n — 1 denoted by X, _j,—1. To extrapolate
this estimate to time update n, the linear time-update is
Xpjn—1 = A X, _1)n—1, Where the time update martrix is given

1K/,
by A = 0 1
rate, K is the number of new input samples processed in each

time update, and K/ fs is the amount of time that has passed
since the last time update.
4) Alpha-Beta Measurement Update: To update the alpha-
beta filter, we use 7|, = Tp|n—1+0ad, and vy, = Vyjn_1+/9,
: _ _ 2—a®—21-a? .
where ¢ is from (3) , a = .5 and 5 = 0.8 =a—=or=—== This
value of 8 produces critical damping [10], [11].

] , where f, is the input data sampling

REFERENCES

[1] E. E. Case, A. M. Zelnio, and B. D. Rigling, “Low-cost acoustic array
for small uav detection and tracking,” in 2008 IEEE National Aerospace
and Electronics Conference, pp. 110-113, July 2008.

J. Busset, F. Perrodin, P. Wellig, B. Ott, K. Heutschi, T. Rhl, and

T. Nussbaumer, “Detection and tracking of drones using advanced acous-

tic cameras,” in Unmanned/Unattended Sensors and Sensor Networks

XI: and Advanced Free-Space Optical Communication Techniques and

Applications (E. M. Carapezza, P. G. Datskos, C. Tsamis, L. Laycock,

and H. J. White, eds.), SPIE, oct 2015.

[3] M. Benyamin and G. H. Goldman, “Acoustic detection and tracking of a
class i uas with a small tetrahedral microphone array,” in Report ARL-TR-
7086, Army Research Laboratory, Adelphi, MD 20783-1138, 2014.

[4] F. Grondin, J.-S. Lauzon, J. Bass, D. Ltourneau, A. Lussier-Desbiens,
and F. Michaud, “Drone detection and localization with sound using
multiple microphone arrays,” in Proceedings NSERC Canadian Field
Robotics Network Symposium, 06 2016.

[5] C. O. Tiemann and M. B. Porter, “Automated model-based localization

of sperm whale clicks,” in OCEANS 2003 Proceedings, vol. 2, pp. 821—

827, Sept 2004.

P. Giraudet and H. Glotin, “Real-time 3d tracking of whales by echo-

robust precise tdoa estimates with a widely-spaced hydrophone array,”

Applied Acoustics, vol. 67, no. 11-12, pp. 1106 — 1117, 2006. Detection

and localization of marine mammals using passive acoustics.

[71 P. M. Baggenstoss, “Processing advances for localization of beaked
whales using time difference of arrival,” Journal of the Acoustical Society
of America, vol. 133, pp. 4065-4076, 2013.

[8] A. G. . Piersol, “Time delay estimation using phase data,” IEEE Trans-
actions on Acoustics, Speech, and Signal Processing, vol. ASSP-29,
pp. 471477, 1981.

[9] P. M. Baggenstoss and S. Kay, “On estimating the angle parameters of
an exponential signal at high snr,” Signal Processing, IEEE Transactions
on, vol. 39, pp. 1203 — 1205, 06 1991.

[10] R. Penoyer, “The alpha-beta filter,” Canadian Govt Report, 1993.

[11] T. R. Benedict and G. Bordner, “Synthesis of an optimal set of radar
track-while-scan smoothing equations,” IRE Transactions On Automatic
Control, pp. 27-32, 1962.

[12] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based algorithm
for discovering clusters in large spatial databases with noise,” in Proceed-
ings of the Second International Conference on Knowledge Discovery
and Data Mining (KDD-96), 1996.

[2

—_

[6

[t



