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Abstract—Robust subspace tracking is crucial when dealing
with data in the presence of both outliers and missing obser-
vations. In this paper, we propose a new algorithm, namely
PETRELS-ADMM, to improve performance of subspace track-
ing in such scenarios. Outliers residing in the observed data are
first detected in an efficient way and removed by the alternating
direction method of multipliers (ADMM) solver. The underlying
subspace is then updated by the algorithm of parallel estimation
and tracking by recursive least squares (PETRELS) in which
each row of the subspace matrix was estimated in parallel.
Based on PETRELS-ADMM, we also derive an efficient way
for robust matrix completion. Performance studies show the
superiority of PETRELS-ADMM as compared to the state-of-
the-art algorithms. We also illustrate its effectiveness for the
application of background-foreground separation.

Index Terms—Robust subspace tracking, robust PCA, robust
matrix completion, missing data, outliers, alternating direction
method of multipliers (ADMM).

I. INTRODUCTION

Subspace estimation is a problem of finding a p-dimensional

subspace U of R
n, p ≪ n, such that it represents the span

of the observed signal (data) vectors, while assuming that

these signals reside in a low dimensional subspace. It is

generally referred to as principal component analysis (PCA),

widely used for dimensionality reduction. Subspace estimation

is typically obtained by batch approaches such as singular

value decomposition (SVD) of the data matrix or eigenvalue

decomposition (EVD) of its corresponding covariance matrix.

These approaches are, however, not suitable for real-time

applications because of their high computational complexity;

O(n3), generally. To handle this problem, subspace tracking,

also called streaming/dynamic PCA, is an excellent alternative

solution and has much less complexity; see [1] for a review.

However, in the presence of corruptions (e.g. noise, missing

entries and outliers), the performance of these approaches may

degrade.

Missing (incomplete) data are ubiquitous in many modern

applications in general and subspace tracking in particu-

lar [2]. State-of-the-art algorithms for handling missing data

aim to interpret RST via geometric lens (i.e., optimization),

such as Grassmannian rank-one update subspace estimation

(GROUSE) [3], parallel estimation and tracking by recursive

least squares (PETRELS) [4] and online stochastic gradient

descent (OSGD) [5]. Among state-of-the-arts, PETRELS pro-

vided competitive performance in terms of subspace estima-

tion accuracy.

It is known that subspace tracking algorithms are sensitive

to outliers (in a similar way as to PCA), thus demanding robust

subspace tracking (RST), or robust streaming PCA. RST has

recently brought much attention and been extensively studied
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in [6]. Main approaches include: principal component pursuit

(PCP) [7], alternating minimization (AltProj) [8], projected

gradient decent (RPCA-GD) [9], recursive projected compres-

sive sensing (ReProCS) [10], ℓp-norm robust online subspace

tracking [11], [12], weighted least square-based RST (RO-

BUSTA) [13] and their extensions. Among these approaches,

only a few of them, for example GRASTA [11], ROSETA [12]

and PETRELS-CFAR [13], are capable of dealing with RST

in the presence of missing data.

In this paper, we consider the RST problem for streaming

data in the presence of both outliers and missing entries. Often,

we aim to reduce the effect of outliers and then apply a robust

cost function, e.g. using GRASTA and ROSETA. However, in

the presence of a large number of corrupted/missing data, the

performance of these methods may not be adequate. On the

other hand, we can also try to identify outliers and treat them

as incomplete data first. Then a subspace tracking method for

missing data (i.e., using non-robust cost function) is exploited

to handle “outliers-removed data” as PETRELS-CFAR in [13].

This method can overcome the need to know the locations of

corrupted entries in advance (as in MD-ISVD [14]), which is

difficult to meet in practice. Moreover, beside its simplicity, we

can also exploit advances in subspace tracking algorithms for

missing data. The drawback, however, is that the performance

of CFAR may degrade in the presence of missing data.

Adopting the approach of PETRELS-CFAR but aiming to

improve the tracking performance, we are interested in looking

for a method that can remove outliers more correctly.

Our paper has two contributions. First, we propose an

algorithm, namely PETRELS-ADMM, for RST with missing

data and outliers. In particular, outliers residing in the observed

data are first detected and removed by the alternating direction

method of multipliers (ADMM) solver in an efficient way. The

main idea is to eliminate the effect of outliers by augmenting

on both sparse and weight vector instead of only weight one

as in the existing methods (See section III-A for more details).

The underlying subspace is then updated by PETRELS. Sec-

ond, we also derive an efficient algorithm for robust matrix

completion by exploiting advantage of PETRELS-ADMM. In

particular, the data labelled as outliers by PETRELS-ADMM

is treated as missing data. As a consequence, only “clean

data” involves the completion process, thus improving overall

performance.

Compared to GRASTA and ROSETA, the proposed

PETRELS-ADMM algorithm has several advantages. First,

our algorithm detects and removes outliers more efficiently.

Second, the cost function in the subspace update step of the

proposed method need not be robust. We note that, to have

the “right” direction toward the true subspace, GRASTA and

ROSETA require robust cost functions as well as additional

adaptive parameter selection. Third, thanks to the use of
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PETRELS, our proposed algorithm has a good convergence

rate and can converge to the global optimum given a full

observation of the data or to a stationary point given a partial

observation (See [4] and [13] for convergence analysis). In

contrast, GRASTA uses the stochastic gradient descent on the

Grassmannian manifold whose convergence rate is limited.

In parallel, convergence of the heuristic subspace tracking

algorithm in ROSETA has not been mathematically analyzed

yet.

II. PROBLEM FORMULATION

At each time instance t, assume that we have a data vector

vt ∈ R
n×1 under the following signal model:

vt = ℓt + nt, (1)

where nt ∈ R
n is additive white Gaussian noise, ℓt ∈ R

n is

considered as the true signal that resides in a low dimensional

subspace of Utrue ∈ R
n×p (p ≪ n), given by

ℓt = Utruewt, (2)

with wt ∈ R
p being a weight vector. Some entries of vt

may be missing and/or corrupted by outliers. So, the observed

vector can be modeled as

vtΩt
= PΩt

(vt) + st, (3)

where PΩt
is the projection under the observation mask Ωt

that indicates whether the k-th entry of vt is observed (i.e.,

Ωt(k) = 1) or not (i.e., Ωt(k) = 0), k = 1, . . . , n, and st ∈
R

N is a sparse outlier vector.

RST problem for missing data and outliers: Given a set of

data vectors {viΩi
}ti=1 at time instances 1, . . . , t, we wish to

estimate a rank-p matrix Ut ∈ R
n×p that represents the span

of the set of signal vectors {ℓi}
t
i=1.

One type of optimization in RST is to minimize the total

projection residual on the observed entries and account for

outliers, as given by

min
t

∑

i=1

1

2

∥

∥

(

UiΩi
wi + si − viΩi

)∥

∥

2

2
+ ρ ‖si‖0 , (4)

where the ℓ0-norm applied to si is to control outlier density

(sparsity) with the regularization weight ρ on outliers. How-

ever, the problem of (4) is NP-hard [15].

Since, the ℓ1-norm ‖si‖1 =
∑n

k=1
|si(k)| is a good convex

approximation of ‖si‖0 [15], we can relax (4) by

min
t

∑

i=1

1

2

∥

∥

(

UiΩi
wi + si − viΩi

)
∥

∥

2

2
+ ρ ‖si‖1 , (5)

which can be efficiently solved by convex optimization.

In particular, the solution of (5) can be obtained using

alternating minimization, which can be decomposed into two

steps. In the first step, we estimate the coefficients wt and

removes the outliers st by minimizing the following function:

f(U,wi, si) = ‖UΩi
wi + si − viΩi

‖2
2
+ ρ ‖si‖1 , (6)

for i = 1, . . . , t. In the second step, we updates the subspace

Ut by

Ut = argmin
U

Ft(U), (7)

where

Ft(U) =
1

t

t
∑

i=1

λt−if(U,wi, si), (8)

and λ with 0 ≪ λ ≤ 1 is the forgetting factor aimed at

discounting the effect of past observations.

Thanks to the law of large numbers, the observation mean,

Ft(U), without discounting (i.e., λ = 1), will converge to the

true mean, F (U), when t approaches infinity. Therefore, the

true signal subspace can be asymptotically obtained by

Utrue = argmin
U∈Rn×p

F (U) (9)

In the next section, we will propose an efficient algorithm to

minimize f(U,wi, si) and Ft(U), and then indicate that its

solution, Ut, will converge almost surely to the local optimum

of F (U).

III. PROPOSED PETRELS-ADMM ALGORITHMS

Now, we propose the PETRELS-ADMM algorithm for

RST with missing data and outliers. The algorithm first

applies the ADMM framework in [16], which has been widely

used in previous works for solving (6) GRASTA [11] and

ROSETA [12], and then uses PETRELS to tackle (7). How-

ever, the main difference in our method is that we propose

to augment on both sparse and weight vectors to further

reduce the effect of outliers. The first part of this section deals

with RST. In the second part, we apply the proposed robust

algorithm to matrix completion.

A. Robust Subspace Tracking

We show here how to solve (6) step-by-step:
1) Update st and wt: Under the assumption that the un-

derlying subspace Ut changes slowly, we have the following

approximation, Ut ≅ Ut−1. Therefore, at each time instance

t, the weights in wt and the outliers in st can be estimated

from the data vector vΩt
and Ut−1 by rewriting (6) as

f(w, s) =
∥

∥Ut−1Ωt
w + s− vtΩt

∥

∥

2

2
+ ρ ‖s‖

1
. (10)

Update st: To estimate st given w, we exploit that the fact

that (10) can be cast into the ADMM form as follows:

min
u,s

h(u) + g(s), subject to u− s = 0, (11)

where u is an additional decision variable, h(u) =
1

2
||Ut−1Ωt

w + u − vtΩt
||22 and g(s) = ρ‖s‖1. The corre-

sponding augmented Lagrangian with the dual variable vector

β is thus given by

L(s,u,v) = g(s) + h(u) + βT (u− s) +
ρ1
2
‖u− s‖22.

We emphasize that we propose to focus on augmenting s,

unlike GRASTA and ROSETA, on augmenting w.

Let r = β/ρ1 be a scaled version of the dual variable. We

obtain the following rule for updating st:

uk+1 = argmin
u

{

h(u) +
ρ1
2
‖u− (rk − sk)‖22

}

=
1

ρ1
(vΩt

−Ut−1Ωt
w)− (rk − sk),

sk+1 = argmin
s

{

g(s) +
ρ1
2
‖uk+1 − (rk − s)‖22

}

= S1/ρ1
(uk+1 + rk),

rk+1 = rk + uk+1 − sk+1,

2019 27th European Signal Processing Conference (EUSIPCO)



where Sα(x) is the soft thresholding, defined as

Sα(x) =











0, if |x| ≤ α,

x− α, if x > α,

x+ α, if x < −α,

which is a proximity operator of the ℓ1-norm [16].
Update wt: To estimate wt given s, we minimize the

augmented Lagrangian of (10), which is

L(w,p,q) =
1

2
||(vtΩt

− p)−Ut−1Ωt
w||22 +

ρ2

2
||w − q||22,

(12)

where p and q are the additional decision variable vectors for

s and w, respectively. However, (12) is still affected by outliers

because s and its decision variable p may not be completely

rejected in each iteration. Therefore, L(w,p,q) can be cast

further into the ADMM form such that it can lie between

least-squares and least-absolute deviations to reduce the effect

of outliers. The Huber fitting can provide a transition between

the quadratic and absolute terms of L(w,p,q) [16], as

fHub(x) =

{

x2/2, |x| ≤ 1,

|x| − 1/2, |x| > 1.

It means that we apply the Huber fitting to two terms of (12).

As a result, q-updates for estimating w involve the proximity

operator of the Huber function, as in

qk+1 =
ρ2

1 + ρ
zk+1 +

1

1 + ρ2
S1+ 1

ρ2

(zk+1),

where z is a dummy variable with zk+1 = Ut−1Ωt
wk+1 +

pk−vΩt
at the k-th iteration. Hence, at the (k+1)-th iteration,

wk+1 can be updated using the following closed-form solution

of the convex quadratic form:

wk+1 = (Ut−1
T
Ωt
Ut−1Ωt

+ ρ2I)
−1Ut−1

T
Ωt
(vtΩt

− pk + qk),

where parameter ρ2 > 0 is to ensure that the matrix

Ut−1
T
Ωt
Ut−1Ωt

+ ρ2I is invertible.

To sum up, the rule for updating wt is be given by

wk+1 = (Ut−1
T
Ωt
Ut−1Ωt

+ ρ2I)
−1Ut−1

T
Ωt
(vtΩt

− pk + qk),

zk+1 = Ut−1Ωt
wk+1 + pk − vtΩt

,

qk+1 =
ρ2

1 + ρ
zk+1 +

1

1 + ρ2
S1+ 1

ρ2

(zk+1),

pk+1 = pk + (Ut−1Ωt
wk+1 − qk+1 − vtΩt

).

We note that, by using the Huber fitting operator, our algo-

rithm is better than GRASTA and ROSETA, which use ℓ2
regularization, in reducing the effect of outliers.

2) Update Ut: Having estimated st, we can rewrite (7) as

Ut = arg min
U∈Rn×p

t
∑

i=1

λt−i‖vi
re
Ωi

−UΩi
wi‖

2
2, (13)

where the recovered signal vre
Ωi

is determined by

vi
re
Ωi
(k) =

{

‖si‖0

n viΩi
(k), if si(k) = 0,

0, otherwise,

and the ℓ1-norm term of outliers st can be eliminated. The

problem of (13) can be solved by using PETRELS [4], which

can be decomposed into subproblems for each row of U. Note

that subspace tracking in this way is efficient since we can

ignore the m-th row if the m-th entry of vt
re
Ωt

is labeled as

corrupted. More details can be found in [4].

The following theorem, whose proof is omitted here due

to the space limitation but can be found in our technical

report [17], indicates the convergence of PETRELS-ADMM.

Theorem 1 (Convergence of PETRELS-ADMM): Let

{Ut}
∞
t=1 be a sequence of solutions generated by PETRELS-

ADMM, then the sequence converges to a stationary point of

the expected loss function F (U) when t → ∞.

B. Robust Matrix Completion

Motivated by the advantages of the proposed PETRELS-

ADMM algorithm, we apply it to the problem of robust

matrix completion (RMC), that is, to recover corrupted entries

affected by missing data and outliers. The main idea is to

treat outliers as missing data and only “clean” data is used to

compute the weight vector. Particularly, v can be divided into

two components: “clean”entries (without outliers and missing)

and corrupted entries, denoted by vclean and vcor respectively.

These components can be obtained by from the projection P
under a mask Ωclean and under the mask for the remaining

(corrupted) entries Ωcor respectively as

vclean = PΩclean
(vt) and vcor = PΩcor

(vt).

Then, the problem of matrix completion is formulated as

(w∗

,v
re
cor) = arg min

w,vcor

‖(UΩclean
w − vclean) + (UΩcorw − vcor)‖

2

2
.

Since PETRELS-ADMM is effective, as latter shown in

the experiments, in correctly locating the missing data and

outliers (i.e., vcor) we can reduce their effects by setting them

to zero. As a result, the matrix completion problem can be

reformulated as

w∗ = argmin
w

‖UΩclean
w − vclean‖

2

2
,

vre
cor = argmin

vcor

‖UΩcor
w∗ − vcor‖

2

2
.

Thus, the closed-form solutions are given by

w∗ =
(

UT
Ωclean

UΩclean

)−1
UT

Ωclean
vclean, (14)

vre
cor = UΩcor

w∗. (15)

IV. EXPERIMENTS

In this section, we assess performance of the proposed

PETRELS-ADMM algorithm by comparing to state-of-the-

arts in three scenarios: robust subspace tracking, robust matrix

completion and video background-foreground separation1.

A. Robust Subspace Tracking

State-of-the-art algorithms for comparison are: GRASTA

[11], ROSETA [12] and PETRELS-CFAR [13]. To have a fair

comparison, the parameters of these algorithms are set default.

In the following experiments, the data vectors {vt}t≥1 were

randomly generated using the standard signal model

vt = Axt + nt, vΩt
= PΩt

(vt) + st.

where A denotes a mixing matrix R
n×p, xt is a random

vector living on the R
p space and both of them are i.i.d.

Gaussian of N (0, 1), nt is white Gaussian noise of N (0, σ2),

1MATLAB codes are available at https://github.com/thanhtbt/RST.
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Fig. 1. Impact of outlier intensity on algorithm performance: n = 100, p = 2, 90% entries observed, outlier density of 5% and SNR = 20 dB.

0 1000 2000 3000 4000 5000
10

-6

10
-4

10
-2

10
0

10
2

0 1000 2000 3000 4000 5000
10

-6

10
-4

10
-2

10
0

10
2

0 1000 2000 3000 4000 5000
10

-6

10
-4

10
-2

10
0

10
2

Fig. 2. Impact of outlier density on algorithm performance: n = 100, p = 2, 70% entries observed, outlier intensity fac-outlier = 5 and SNR = 20 dB.
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Fig. 3. Impact of missing density on algorithm performance: n = 100, p = 2, outlier density of 30%, outlier intensity fac-outlier = 5 and SNR = 20 dB.

with SNR = −10 log10(σ
2) is the signal-to-noise ratio to

control the effect of noise to the algorithms. performance,

PΩt
is the projection under the observation mask Ωt with a

given percentage of missing data k%, st is i.i.d. uniform over

[0, fac-outlier], where fac-outlier determines the maximum

magnitude of outliers. We use random initialization in all

experiments.

The subspace estimation performance (SEP) metric [13],

defined below, is used to assess the subspace estimation

accuracy:

SEP =
tr{UT

es(I−UexU
T
ex)Ues}

tr{UT
es(UexUT

ex)Ues}
,

where Uex and Ues are the true and the estimated subspaces

correspondingly. The lower SEP is, the better the performance

of algorithm.

Fig. 1 indicates the effect of outlier intensity on algorithm

performance. As we can see, at low intensity, all algo-

rithms yielded good accuracy with fast convergence, though

ROSETA provided higher SEP as compared to that by the

three remaining algorithms. Meanwhile, at high intensity (e.g.

fac-outlier = 0.1, 1 or 10), PETRELS-ADMM provided the

best performance in terms of both convergence speed and

accuracy.

Fig. 2 shows the performance in terms of outlier density.

We can see that PETRELS-ADMM outperformed GRASTA,

ROSETA and PETRELS-CFAR. In the presence of a high

percentage of outliers, e.g. 50% as in Fig. 2, PETRELS-

ADMM yielded reasonable performance in terms of accuracy,

SEP ≈ 10e-4, while the other algorithms failed. When the

measurement data were corrupted by a smaller number of

outliers, PETRELS-ADMM still provided better performance

than the others, as shown in Fig. 2.

The effect of missing data density is presented in the Fig. 3.

Similarly, PETRELS-ADMM yielded good performance in

three cases of missing data: 10%, 30% and 50%. PETRELS-

CFAR provided similar performance but with slower conver-

gence, while ROSETA and GRASTA were only good for the

cases of low percentage of missing data (e.g. ≤ 50%).

B. Robust Matrix Completion

We compare the performance RMC using PETRELS-

ADMM, GRASTA [11] and RPCA-GD [9]. The measurement

data X = AS used for this task were the rank-2 matrices

with size of 400 × 400. We generated the mixing matrix

A ∈ R
400×2 and the signal matrix S ∈ R

2×400 at random.

The entries were i.i.d. Gaussian of N (0, 1). The measurement

data X was added with white Gaussian noise N ∈ R
400×400

whose SNR is set to 40 dB. The measurement data matrices

were corrupted by different percentages of missing and outliers

from 0%− 90%. The location and value of corrupted entries

(including missing and outliers) were uniformly distributed.

Fig. 4 shows that the proposed algorithm of PETRELS-

ADMM-based RMC outperformed GRASTA-based and
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Fig. 4. Effect of outlier intensity on robust matrix completion performance.
White colour denotes perfect recovery, black colour denotes failure and
gray colour is in between. From left to right column: PETRELS-ADMM,
GRASTA, RCPA-GD.

RPCA-GD-based algorithms. At low outlier intensity (i.e.,

fac-outlier = 0.1), PETRELS-ADMM-based RMC and

RCPA-GD-based RMC provided excellent performance even

when the data were corrupted by a very high fraction of

outliers and the missing data were recovered perfectly. At high

outlier intensity (i.e., fac-outlier ≥ 1), PETRELS-ADMM-

based RMC provided the best performance in terms of matrix

reconstruction error, GRASTA-based RMC still retained good

performance, while RPCA-GD-based RMC failed to recover

corrupted entries.

C. Video Background/Foreground Separation

We further illustrate the effectiveness of the proposed

PETRELS-ADMM algorithm in the application of RST for

video background/foreground separation, and compare it with

GRASTA and PETRELS-CFAR. Datasets “Highway” in-

cluding 1700 frames of size 240 × 320 pixels and “Side-

walk”including 1200 frames of size 240 × 352 pixels were

obtained from CD.net20122. The “Lobby” has 1546 frames

of size 144×176 pixels from GRASTA.We can see from Fig. 5

that PETRELS-ADMM was capable of detecting objects in

video and provided competitive performance to GRASTA and

PETRELS-CFAR.

V. CONCLUSIONS

In this work, we have studied the problem of robust sub-

space tracking to deal with corrupted data in the presence

of both outliers and missing observations. A new efficient

algorithm, namely PETRELS-ADMM, was proposed for ro-

bust subspace tracking and for robust matrix completion.

Experiments were conducted to illustrate the effectiveness of

the proposed algorithms in terms of both quantity and quality.

VI. ACKNOWLEDGMENT

This work was supported by the National Foundation for

Science and Technology Development of Vietnam under Grant

No. 102.04-2019.14.

2CD.net2012: http://jacarini.dinf.usherbrooke.ca/dataset2012.

20 40 60 80 100 120 140 160

20

40

60

80

100

120

Fig. 5. Video Background-Foreground Separation. From left to right column:
original data, PETRELS-ADMM, GRASTA, PETRELS-CFAR.

REFERENCES

[1] J. P. Delmas, “Subspace tracking for signal processing,” Adaptive Signal

Processing: Next Generation Solutions, pp. 211–270, 2010.
[2] L. Balzano, Y. Chi, and Y. M. Lu, “Streaming pca and subspace tracking:

The missing data case,” Proceedings of the IEEE, vol. 106, no. 8, pp.
1293–1310, 2018.

[3] L. Balzano, R. Nowak, and B. Recht, “Online identification and tracking
of subspaces from highly incomplete information,” in Communication,

Control, and Computing (Allerton), 2010 48th Annual Allerton Confer-

ence on. IEEE, 2010, pp. 704–711.
[4] Y. Chi, Y. C. Eldar, and R. Calderbank, “Petrels: Parallel subspace

estimation and tracking by recursive least squares from partial obser-
vations,” IEEE Transactions on Signal Processing, vol. 61, no. 23, pp.
5947–5959, 2013.

[5] M. Mardani, G. Mateos, and G. B. Giannakis, “Subspace Learning
and Imputation for Streaming Big Data Matrices and Tensors,” IEEE

Transactions on Signal Processing, vol. 63, no. 10, pp. 2663–2677,
2015.

[6] N. Vaswani, T. Bouwmans, S. Javed, and P. Narayanamurthy, “Robust
Subspace Learning: Robust PCA, Robust Subspace Tracking, and Ro-
bust Subspace Recovery,” IEEE Signal Processing Magazine, vol. 35,
no. 4, pp. 32–55, 2018.

[7] E. J. Candès, X. Li, Y. Ma, and J. Wright, “Robust principal component
analysis?” Journal of the ACM (JACM), vol. 58, no. 3, p. 11, 2011.

[8] P. Netrapalli, U. Niranjan, S. Sanghavi, A. Anandkumar, and P. Jain,
“Non-convex robust PCA,” in Advances in Neural Information Process-

ing Systems, 2014, pp. 1107–1115.
[9] X. Yi, D. Park, Y. Chen, and C. Caramanis, “Fast algorithms for

robust PCA via gradient descent,” in Advances in Neural Information

Processing Systems, 2016, pp. 4152–4160.
[10] C. Qiu, N. Vaswani, B. Lois, and L. Hogben, “Recursive Robust PCA

or Recursive Sparse Recovery in Large but Structured Noise,” IEEE

Transactions on Information Theory, vol. 60, no. 8, pp. 5007–5039,
2014.

[11] J. He, L. Balzano, and A. Szlam, “Incremental gradient on the grassman-
nian for online foreground and background separation in subsampled
video,” in Computer Vision and Pattern Recognition (CVPR), 2012 IEEE

Conference on. IEEE, 2012, pp. 1568–1575.
[12] H. Mansour and X. Jiang, “A robust online subspace estimation

and tracking algorithm,” in Acoustics, Speech and Signal Processing

(ICASSP), 2015 IEEE International Conference on. IEEE, 2015, pp.
4065–4069.

[13] N. Linh-Trung, V. Nguyen, M. Thameri, T. Minh-Chinh, and K. Abed-
Meraim, “Low-complexity adaptive algorithms for robust subspace
tracking,” IEEE Journal of Selected Topics in Signal Processing, vol. 12,
no. 6, pp. 1197–1212, 2018.

[14] M. Brand, “Incremental singular value decomposition of uncertain data
with missing values,” in European Conference on Computer Vision.
Springer, 2002, pp. 707–720.

[15] J. A. Tropp, “Just relax: convex programming methods for identifying
sparse signals in noise,” IEEE Transactions on Information Theory,
vol. 52, no. 3, pp. 1030–1051, 2006.

[16] S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein et al., “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Foundations and Trends R© in Machine learning, vol. 3,
no. 1, pp. 1–122, 2011.

[17] T. T. Le, V.-D. Nguyen, N. Linh-Trung, and K. Abed-Meraim, “Robust
subspace tracking with missing data and outliers: Novel algorithm and
performance guarantee,” VNU University of Engineering and Technol-
ogy, Vietnam, Tech. Rep. UET-AVITECH-2019003, May 2019.

2019 27th European Signal Processing Conference (EUSIPCO)


