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Abstract—In this paper, a block extended coordinate descent
algorithm is introduced for MMSE based soft-output massive
MIMO signal detection, which exploits the simple inversion
of small sub-Gram matrices to allow a low-complexity imple-
mentation. We show that the resulting two-coordinates descent
approach has a computational complexity comparable to the
original coordinate descent signal detector, whereas the latency
bottleneck can be relaxed and further the data detection per-
formance can be improved as the simulation results show. Also
we show the possibility to approximate the Gram matrix with
fewer multiplications while maintaining a near-optimal detection
performance.

Index Terms—Massive MIMO, Soft-Output, Signal Detection,
Low-Complexity, Matrix Approximation

I. INTRODUCTION

High-performance wireless communication is an important
issue of present research due to several ongoing trends,
like cloud computing, industrial communications or vehicular
communications (V2V) [1]. Beside the traditional performance
objectives, like power consumption, complexity and through-
put, robust communication has become a highly desirable
constraint. For instance, in the scope of industrial radio, even
small disturbances caused, e.g., by channel side effects or
antenna correlations, must be minimized in order to avoid
security-critical malfunction that may cause serious damages
or human injuries.

A promising approach to achieve the ambitious objectives of
future wireless communication systems is to go for concurrent
multi-antenna communications, in particular massive multiple-
input-multiple-output (MIMO) systems [2]. In this scope,
very large antenna arrays are considered, where the number
of antennas is scaled up to hundreds antennas in order to
raise the robustness and/or the data rate. However, practically
implementing a massive MIMO system quickly becomes a
complicated task, due to several implementation challenges
that have to be addressed like accurate antenna design, energy
efficiency, connectivity and synchronization issues, etc. Above
all, the efficient implementation of high-performance baseband
signal detectors is of major interest.

To solve this problem, several algorithmic approaches
have been investigated by now, mainly concentrating on
iterative linear equalization methods based on estimation
schemes like zero forcing (ZF) or minimum mean square

error (MMSE), which achieve a near-optimal data detection
when the basestation-to-client anntennas ratio (BCR) is large
enough [2]. For instance, meaningful results can be achieved
considering the iterative Richardson iterations [3], Conjugate-
Gradient (CG) method [4] or the Gauss-Seidel (GS) approach
[5]. However, these algorithms need the so-called Gram matrix
and the matched filter output vector, whose determination
incurs high computational complexity.

Another approach is based on the coordinate descent (CD)
algorithm, where only the calculations of channel gains are
required to determine the line-search step size; this allows
a high-throughput soft-output signal estimation [6]. However,
corresponding algorithms suffer from a high latency because
it updates the estimated signals for each user in a strict,
sequential manner.

In this paper, we propose an extension to the MMSE-
based CD soft-output detector by performing an iterative
signal estimation for two transmit signals at once, where
a simple inversion of 2 × 2 sub-Gram matrices is applied.
The two-coordinates descent (2CD) outperforms the traditional
approach but has a comparable low complexity. An approxi-
mation methodology for Gram matrices is proposed to reduce
the number of computations for the preprocessing stage, which
is also applicable to existing iterative signal detection methods.

II. PRELIMINARIES

We consider a centralized large-scale MIMO uplink system
where a number of NC non-cooperative single-antenna clients
simultaneously transmit digitally modulated data over a wire-
less channel to a basestation (BS) consisting of NB � NC

receiving antennas. Furthermore, the wireless channel is as-
sumed to be flat, e.g. by using orthogonal frequency division
multiplexing (OFDM) with a sufficient cyclic prefix, so the
received signal at the BS y ∈ CNB can be described by the
linear equation system

y = Hs+ n , (1)

where the vector s ∈ ANC represents the compilation of all
client-specific transmitted symbols si with i = 1, . . . , NC,
taken from a fixed normalized modulation alphabet A. Under
the assumption of a flat Rayleigh fading, the entries of
the wireless channel matrix H ∈ CNB×NC are symmetric
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complex Gaussian, independently and identically distributed
(i.i.d) with zero mean and unit variance. The additive white
Gaussian noise vector n ∈ CNB holds i.i.d. entries with zero
mean and variance σ2

n. Further, perfectly known channel state
information (CSI) is assumed. Considering the channel model
from eq. (1), the optimal symbol detection can be achieved by
solving the maximum-likelihood (ML) problem

ŝML = argmin
s∈ANC

‖Hs− y‖22 , (2)

which requires an exhaustive search through all possible com-
binations of symbols in A. Due to the large number of linear
equations in eq. (1), the ML estimation approach is impractical
for massive MIMO systems, as computational complexity
grows exponentially. Also, even approximate ML methods like
sphere detection or lattice reduction could be implemented
only for highly limited modulation alphabets [7] [8]. On the
other hand, by allowing solutions all over the complex vector
space ŝ ∈ CNC , linear detector schemes like ZF or MMSE can
be applied, which have a much lower complexity compared
to the ML method. Under the assumption that the BS has
knowledge of the noise power σ2

n the MMSE detection is given
by the solution of the following unconstrained optimization
problem:

ŝMMSE = argmin
s∈CNC

‖Hs− y‖22 + σ2
n ‖s‖

2
2 (3)

Equivalently, the estimated signal vector ŝMMSE from eq. (3)
can also be computed directly by the closed-form solution of
the regularized least squares problem

ŝMMSE =
(
HHH+ σ2

nINC

)−1
HHy = G̃−1yMF , (4)

where it is required to determine the inverse of the regularized
Hermitian Gram matrix G̃ = HHH+σ2

nINC
and the matched

filter output vector yMF = HHy. When we can assume that
the estimate in eq. (4) is close to the ML solution, reliability
information like log-likelihood ratios (LLR) for a soft-input
channel decoder can be extracted, which results in a huge data
detection performance gain [2]. The max-log approximated
LLR Lb of bit b for the i-th client signal estimate ŝi is then
given by:

Lb(ŝi) = ρi

(
min
c∈A0

b

∣∣∣∣ ŝiµi − c
∣∣∣∣2 − min

c∈A1
b

∣∣∣∣ ŝiµi − c
∣∣∣∣2
)

(5)

The subsets A0
b and A0

b contain the constellation points of the
alphabet A where the bit b is equal to 0 and 1, respectively.
When we define the equivalent post-equalization channel
matrix as E = G̃−1G with the Gram matrix G = HHH,
the necessary post-equalization channel gain and signal-to-
interference-plus-noise ratio (SINR) are given by µi = eii and
ρi = µi/(1−µi), respectively. For large BCR % = NB/NC it
was shown that the MMSE detection method achieves a near-
ML data detection performance regarding to the bit error rate
[2]. Nevertheless, the computational complexity of computing
the Gram matrix G and its regularized inverse G̃−1 for
the closed-form solution of the MMSE estimation problem

in eq. (4) is O(NBN
2
C) and O(N3

C), which becomes an
infeasible task for a continuously growing number of antennas
in a massive MIMO communication system. To avoid the
explicit inversion of G̃, various approaches like the inverse
Gram matrix approximation by a Neumann-series or iterative
algorithms like Richardson iterations, Gauss-Seidel method
or the conjugate gradient algorithm are able to reduce the
complexity to O(N2

C) but still require to compute the Gram
matrix G, which is hard to realize for scenarios where the
wireless channel is assumed to change rapidly [3] [4] [5] [9].

III. TWO-COORDINATES DESCENT BASED MMSE
SOFT-OUTPUT DATA DETECTION

A promising approach for the soft-output signal detection
avoiding the explicit computation of the full Gram matrix is
the CD method that restricts the minimization of the target
function in eq. (3) along the direction of a single component
of s in a cyclic iterative fashion. While this allows a high-
throughput hardware realization, the latency is comparatively
high compared to normal equations based on approaches be-
cause of the strongly sequential implementation [6]. To tackle
this problem we propose an extension to the classical CD
approach by introducing coordinate blocks instead of single
coordinates. By choosing these blocks small enough and using
further subsampling approximations to reduce the number of
scalar product operations, the complexity of the optimization
algorithm does not increase significantly while the sequential
character of the classical CD algorithm is relaxed.

A. Generalized block coordinate descent

The derivation of the block extended version of the CD
algorithm is similar to the original approach in [6]. First, we
set the gradient of the cost function of eq. (3), denoted as ϕ(s),
in respect to a subset of components sB with B ⊂ {1, . . . , NC}
to zero to find the optimal vector ŝB.

gradB(ϕ(s)) = HH
B (Hs− y) + σ2

nsB = 0 (6)

By splitting the channel matrix H = [HB|HI ] and the symbol
vector sH =

[
sHB |sHI

]
with I = {1, . . . , NC} \B, the solution

of eq. (6) can be written as

ŝB = G̃−1B HH
B (y −HIsI) , (7)

where G̃B = HH
BHB + σ2

nI is the so-called Hermitian
regularized sub-Gram matrix, with HB ∈ CNB×|B| containing
the columns of H regarding the elements in subset B. Like
in the original formulation of the MMSE based CD soft-
output detector, we define a residual approximation vector
r(n) ∈ CNB for the n-th iteration:

r(n) = y −HIn ŝ
(n)
In −HBn

ŝ
(n)
Bn

(8)

so that eq. (7) can be rewritten for the n-th iteration

ŝ
(n)
Bn

= G̃−1Bn

(
HH
Bn

r(n−1) +GBn
ŝ
(n−1)
Bn

)
(9)

with the initialization ŝ(0) = 0 and r(0) = y. Note, that the
component subsets Bn and In vary for each iteration to ensure
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that the minimization of ϕ(s) is performed at least once for
each component. Due to the use of the sub-Gram matrix in
eq. (9) the block coordinate descent (BCD) algorithm also
keeps the non-normalized inter-client interference coefficients
gBn,ij for the soft-output detection into account, which results
in a superior convergence rate compared to the classical CD
algorithm.

B. Two-coordinates descent

In comparison to the classical CD approach, the block
extended method requires the inversion of the sub-Gram
matrices, which incurs significant computational complexity
when the coordinate blocks are large. But fortunately, when
the blocksize is restricted to |B| = 2, the inverse of the sub-
Gram matrix can be calculated explicitly at low complexity
by G̃−1B = γ−1B C̃B with C̃B = adj(G̃B) and γB = det(G̃B)
being the adjugate and determinant of the regularized sub-
Gram matrix G̃B, respectively. In that specific case C̃B and
γ−1B are given by:

C̃B =

(
gB,22 + σ2

n −gB,12
−g∗B,12 gB,11 + σ2

n

)
= CB + σ2

nI (10)

γ−1B =
(
gB,11gB,22 − |gB,12|2 + σ2

n(gB,11 + gB,22 + σ2
n)
)−1
(11)

As it can be seen in eq. (10) due to the addition of the noise
variance σ2

n on the main diagonal of the sub-Gram matrix GB,
the adjugate of G̃B can be alternatively described by a sum
of the adjugate of the sub-Gram matrix CB and the diagonal
MMSE regularization matrix σ2

nI. In that specific case C̃B
can be determined without further computations, as is it given
by simple element interchanging of GB and sign flipping.
Additionally, the calculations of the scaling factors γ−1B in
eq. (11) contain only real valued multiplications because of
the Hermitian structure of the regularized sub-Gram matrix.
Using eq. (10) and (11) the inverse of the regularized sub-
Gram matrix G̃B can be explicitly computed by:

G̃−1B = γ−1B
(
CB + σ2

nI
)

(12)

Using the explicit inverse in eq. (12) for the BCD update
equation with |B| in eq. (9) leads to the update equations of
the two-coordinates descent (2CD) algorithm:

ẑ
(k)
t = HH

Bt
r
(k)
t−1 +GBt

ŝ
(k−1)
Bt

(13)

ŝ
(k)
Bt

= γ−1Bt

[
CBt

ẑ
(k)
t + σ2

nẑ
(k)
t

]
(14)

r
(k)
t = r

(k)
t−1 −HBt

(
ŝ
(k)
Bt
− ŝ

(k−1)
Bt

)
(15)

To reduce the number of computations, a cyclic selection
scheme Bt = {2t − 1, 2t} for t = 1, . . . , NC/2 is used, fol-
lowing that each iteration k consists of updating each estimate
ŝi once. Due to the fixed component sets Bt, the sub-Gram
matrices can be precomputed and reused in each iteration k.
After a number of K iterations, the estimates ŝi are used to
calculate the LLR with the approximation from [4] for the
post-equalization channel gains µ̃i = ‖hi‖22/

(
‖hi‖22 + σ2

n

)
and the post-equalization SINR ρ̃i = µ̃i/(1−µ̃i), where ‖hi‖22

TABLE I: Number of real valued multiplications

Initialization K time iteration
RI [3] 2NBN

2
C (4N2

C + 2NC)K
CG [4] 2NBN

2
C (4N2

C + 10NC)K
GS [5] 2NBN

2
C 4N2

CK
CD [6] 2NBNC +NC (8NBNC + 4NC)K
2CD 4NBNC + 3NC (8NBNC + 14NC)K

denotes the squared norm of the i-th column of the channel
matrix H.

C. Sub-Gram matrix approximation

One of the main advantages of the coordinate descend
algorithms is the relatively low overhead, i.e. these methods
do not require the computation of the full Gram matrix G
and the matched filter vector yMF in eq. (4). Instead, for the
CD and 2CD we just have to determine the channel gains and
the sub-Gram matrix with their associated inverse determinant
as a preprocessing step [6]. To further reduce the number
of computations in the preprocessing stage of the 2CD we
can approximate the sub-Gram matrices, which are used in
the update equations (13) and (14). As it was shown for a
flat fading Rayleigh channel model the channel matrix H can
be approximated regarding their singular values by a simple
randomized row subsampling [10]. By adopting this idea, the
sub-Gram matrices for the proposed 2CD can be approximated
by

GBt
≈ 1

η
(SHBt

)
H
(SHBt

) , (16)

with 0 < η ≤ 1 the subsampling factor and the so-called
subsampling matrix S ∈ {0, 1}ηNB×NB , which holds a random
subset of ηNB rows from an NB ×NB identity matrix. If we
assume that each antenna at the BS receives approximatively
the same energy, the scaling factor 1/η compensates the power
loss caused by the subsampling procedure. Note that for the
CD algorithm, the same method can be applied to approximate
the channel gains, whose reciprocal values are used as constant
step sizes.

IV. EVALUATION

A. Computational complexity analysis

For a comparison of the complexity between the pro-
posed 2CD algorithm and the normal-equations based methods
Richardson iterations (RI) [3], Gauss-Seidel (GS) method
[5], conjugate gradient (CG) method [4] and the original
coordinate descent (CD) approach [6], we count the number
of real valued multiplications for a fixed number of iterations
K in dependency of the number of BS antennas NB and the
single-antenna clients NC, which are shown in table I. We
assume that one complex valued multiplication corresponds
to four real valued multiplications. We differentiate between
initialization complexity, where e.g. the sub-Gram matrices are
calculated, and iteration dependent complexity, which scales
with the number of total iterations K for the successive
detection procedure. Various computations for initial estimates
and the LLR calculates are not included. In the comparison,
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Fig. 1: Bit error rate (BER) for a massive MIMO system with NC = 8 single-antenna clients using the iterative soft-output
detectors RI [3], CG [4], CD [6] and our proposed 2CD at different transmit signal-to-noise ratios (SNR) with a varying
number of iterations K for (a) NB = 32 and (b) NB = 128 antennas at the BS. The optimal MMSE detector (black line) is
given as reference.

the initialization complexity for the CD and 2CD approaches
scales linear to the number of antennas at the BS NB and
the number of single-antenna clients NC whereas the number
of real valued multiplications increase linear to NB and
quadratically with NC for the normal-equation based detectors.
This evolves to a critical state when the number of clients in
the communication system grows.

Comparing the CD with our proposed 2CD it can been seen
that our approach requires more real valued multiplications for
the initialization, but has roughly the same complexity in the
iterative processing stage. Note that due to the parallelization
of the CD method in form of the 2CD the slightly increased
computational complexity in the preprocessing is unavoidable.

B. BER performance

To evaluate the data detection performance of the proposed
2CD based soft-output MMSE detector we evaluate the bit
error rate (BER) performance for different transmit signal-to-
noise ratios (SNR). For the simulations we use the channel
model from eq. (1) with NC = 8 and NB = {32, 128}
two different BCR %. In the simulations, each client uses
a punctured rate 5/6 convolutional code with polynomials
[133o, 171o] and 64-QAM modulation. At the receiver side,
the extracted LLR from the soft-output detector is decoded
using a soft-input Viterbi decoder.

The BER for the proposed soft-output detector is shown
in fig. 1 for both system dimensions with a fixed number of
iterations K. For a comparison to existing methods, we eval-
uate also the approximate MMSE detectors RI, CG and CD,
where no further initialization is used. Additionally, we use
the approximation for the post-equalization channel gains and
SINR from section III-B. Note that we exclude the GS method

from the simulations, as it is just a special implementation of
the cyclic CD based on the normal equations [11].

In case of NB = 32 antennas at the BS (% = 4) the CG, CD
and 2CD approaches achieve a close-to MMSE performance
for K = 4 iterations and a near-optimal performance for
K = 5 iterations. As it is shown in fig. 1a the 2CD
approach significantly outperforms the CG and CD method for
K = 4. By increasing the number of iterations to K = 5 the
performance gap between the iterative method CG, CD method
and the optimal MMSE detector gets larger for higher SNR,
while our 2CD approach still achieves a near-MMSE BER
performance. Due to the use of the inter-client interference
information in the 2CD algorithm, the proposed method can
still attain a near-MMSE BER performance within a limited
number of iterations, even when the BCR % becomes small.

When the BCR increases to % = 16 with NB = 128 the
necessary number of iterations for the low-complexity soft-
output detection methods reduces, which can be seen in fig.
1b. While the 2CD method noticeably outperforms CG and
CD at K = 2 iterations, all of them achieve a near-MMSE
BER performance for K = 3. As the client-channels in the
massive MIMO become nearly uncorrelated for high % due to
the channel hardening property, the absolute values of the off-
diagonal elements of the sub-Gram matrix decrease as well,
so that the convergence rate of the 2CD becomes similar to
the CD method.

C. Subsampling capabilities

As shown in sec. IV-A the initialization of the CD and 2CD
method has a significantly lower computational complexity
compared to the normal equation based approaches as these
algorithms do not require the full Gram matrix and matched
filter output vector. Especially for high BCR %, where the
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Fig. 2: Bit error rate (BER) for a massive MIMO system with NC = 8 single-antenna clients using the soft-output detectors
CD [6] and our proposed 2CD with different subsampling ratios η for (a) NB = 128 and (b) NB = 256 antennas at the BS.
The BER is evaluated at three different transmit signal-to-noise ratios (SNR).

linear detection methods achieve a near-MMSE at minimum
complexity, the latency, caused by the preprocessing, becomes
critical. To mitigate this bottleneck, we use the subsampling
methodology in sec. III-C to approximate the channel gains
and sub-Gram matrices with fewer multiplications for the CD
and 2CD detectors, respectively. To investigate the impact of
the subsampling based approximation we evaluate the BER
with the simulation parameters from sec. IV-B for NB =
{128, 256} and K = 2 over the subsampling parameter η
at three different SNR, which is shown in fig. 2.

For NB = 128 (% = 16) it can be seen in fig. 2a that
the BER of both detection methods decrease continuously
by increasing the subsampling parameter η. Interestingly, for
η ≥ 0.9 the algorithms achieve a BER close to the non-
approximation case (η = 1). While the approximation of the
channel gains in the CD method has a weaker degradation for
η < 0.9, the 2CD outperforms this method in the stable region
mentioned before, still.

The same BER characteristic can be seen in fig. 2b, where
the number of BS antennas is increased to NB = 256
(% = 32). In comparison the BER decreases rapidly when
the subsampling factor increases, where for η > 0.6 the
optimal signal detection performance for both methods can
be accomplished.

V. CONCLUSION

In this paper, we extended the original CD soft-output detec-
tor to the block CD, which performs the MMSE optimization
over multiple transmit signals at once. By restricting the block
size to two, a simple inversion of the resulting sub-Gram matri-
ces could be achieved, with a computational complexity close
to the CD detector, whereas the data detection performance
outperforms the original approach. Furthermore, it was shown
that for very high BCR the initialization of the CD and 2CD

methods can be simplified by random subsampling without
noticeable performance loss in the signal detection.
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