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Abstract—Cell-free architectures have recently emerged as a
promising architecture with the potential to offer equal user-
rates throughout the coverage area. Given the spectral congestion
at sub-6 GHz bands, there is a pressing interest in evaluating
the cell-free performance in the mmWave regime. This paper
addresses the design and performance evaluation of the downlink
segment of cell-free mmWave Massive MIMO system using
hybrid precoders under the realistic assumption of capacity-
constrained fronthaul links. Towards this end, a hybrid digital-
analog beamforming is proposed where the high-dimensional
analog part only depends on second-order large scale informa-
tion. The low-dimensional digital part can then be implemented
using standard precoding techniques that rely on instantaneous
CSI. Numerical results demonstrate that this reduced-complexity
architecture, when combined with an adequate user selection
(scheduling), attains excellent Max-Min performance when oper-
ating under limited-fronthaul constraints.

I. INTRODUCTION

Very recently, the underpinning idea of massive multiple-

input multiple-output (MIMO) has been combined with the

deployment of ultradense networks (UDN) giving rise to the

concept of cell-free massive MIMO networks [1]. In these

networks, a massive number of access points (APs) connected

to a central processing unit (CPU) are distributed across

the coverage area to coherently serve a large number of

mobile stations (MSs) over the same time/frequency resources.

Interestingly, using simple linear signal processing schemes,

cell-free massive MIMO claims to provide uniformly good

quality of service (QoS) to the whole set of served MSs

throughout the entire coverage area.

Since the microwave radio spectrum is highly congested, the

so-called millimeter wave (mmWave) bands [2] have recently

attracted the attention of the research community. The very

small wavelengths of mmWaves, combined with the techno-

logical advances in low-power CMOS radio frequency (RF)

miniaturization, allow for the integration of a large number of

antenna elements into small form factors. Large antenna arrays

can then be used to effectively implement mmWave massive

MIMO schemes that, with appropriate beamforming, can more

than compensate for the orders-of-magnitude increase in free-

space path-loss produced by the use of higher frequencies. The

performance of cell-free massive MIMO using conventional

sub-6 GHz frequency bands under infinite- or finite-capacity

fronthaul links has been extensively studied in, for instance,

[1], [3]–[5] but always assuming the use of fully digital

precoders, a solution difficult to replicate in practice in the

mmWave range. In fact, most mmWave systems rely on hybrid

digital-analog signal processing architectures typically imple-

mented using analog phase shifters and/or analog switches for

the RF front-end in conjunction with low-dimensional base-

band digital precoders [6]. Despite its evident potential, as far

as we know, besides [7], [8] there is no other research work on

cell-free mmWave massive MIMO systems and, furthermore,

the authors of these works did not consider the fact that these

systems require of a substantial information exchange between

the APs and the CPU via capacity-constrained fronthaul links.

Moreover, they also considered the use of oversimplified

mmWave channel models and RF precoding stages, without

constraining the available number of RF-chains at each AP.

Our main aim in this paper is to address the design and

performance evaluation of realistic cell-free mmWave massive

MIMO systems using hybrid precoders and assuming the

availability of capacity-constrained fronthaul links connecting

the APs and the CPU. In particular, the performance of the

downlink (DL) of a cell-free mmWave massive MIMO system

is considered by posing and solving max-min fairness resource

allocation problems that take into account the effects of im-

perfect channel estimation, power control, non-orthogonality

of pilot sequences, and fronthaul capacity constraints. Along

the way, a hybrid beamforming implementation is proposed

where the high-dimensionality RF stage is based on large-scale

second-order statistics of the channel while limiting the use of

instantaneous CSI to the low-dimensional baseband multiuser-

MIMO (MU-MIMO) precoding/decoding stages.

II. SYSTEM MODEL

Let us consider the downlink of a cell-free massive MIMO

system where a CPU coordinates the communication between

M APs and K single-antenna MSs randomly distributed in a

large area. Each of the APs communicates with the CPU via

error-free fronthaul links with DL capacity CF d. Baseband

processing of the transmitted/received signals is performed at

the CPU, while the RF operations are carried out at the APs.

Each AP is equipped with an array of N > K antennas

and L ≤ N RF chains. A fully-connected architecture is

considered where each RF chain is connected to the whole

set of antenna elements using N analog phase shifters [6].

Without loss of generality, it is assumed in this paper that the

number of active RF chains at each of the APs in the network

is equal to LA = min{K,L}. That is, if K ≤ L, all APs

in the cell-free network provide service to the whole MS set

whereas if K > L, each AP can only provide service to L out
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of the K MSs in the network, thus requiring of an algorithm

to decide which are the MSs to be served from each APs.

The propagation channels linking the APs to the MSs

are typically characterized by small-scale parameters that are

(almost) static over a coherence time-frequency interval of τc
time-frequency samples (see [9, Chapter 2]), and large-scale

parameters (i.e., path loss propagation losses and covariance

matrices) that can be safely assumed to be static over a time-

frequency interval τLc ≫ τc. As shown in the following

subsections, these channel characteristics can be leveraged

to simplify both the channel estimation and the precod-

ing/combining processes. In particular, DL and uplink (UL)

transmissions between APs and MSs are organized in a half-

duplex time division duplexing (TDD) operation whereby each

coherence interval is split into three phases, namely, the UL

training phase, the DL payload data transmission phase and

the UL payload data transmission phase, and every large-scale

coherence interval τLc the system performs an estimation of

the large-scale parameters of the channel. As typically done

in a Massive MIMO TDD-based context, channel reciprocity

is assumed to hold, thus avoiding the need for downlink

training [9]. Unlike sub-6 GHz channels, mmWave propaga-

tion is characterized by very high distance-based propagation

losses that lead to sparse scattering multipath propagation.

Furthermore, the use of mmWave transmitters and receivers

with large tightly-packet antenna arrays results in high antenna

correlation levels. In this work, use is made of the discrete-time

narrowband clustered channel model proposed by Akdeniz et

al. in [10] and further extended in [11]. Under this model,

when a link is not in outage is characterized using a standard

pathloss model with shadowing given by

PL(dmk)[dB] = α+ 10β log
10
(dmk) + χmk, (1)

where α and β are the least square fits of floating intercept and

slope and depend on the carrier frequency and on whether the

link is in line-of-sight (LOS) or non-line-of-sight (NLOS) (see

[10, Table I]). Parameter χmk denotes the large-scale shadow

fading component, which is modelled as a zero mean spatially

correlated normal random variable with standard deviation σχ

(again, see [10, Table I] to obtain the typical values of σχ

for LOS and NLOS links) whose spatial correlation model is

described in [1, (54)-(55)].

The channel vector hmk ∈ C
N×1 between AP m and MS

k will be modelled as the sum of the contributions of Cmk

scattering clusters, each contributing Pmk propagation paths

hmk =

Cmk
∑

c=1

Pmk
∑

p=1

αmk,cpa (θmk,cp, φmk,cp) , (2)

where αmk,cp is the complex small-scale fading gain on the

pth path of cluster c, and a (θmk,cp, φmk,cp) represents the

AP normalized array response vector at the azimuth and

elevation angles θmk,cp and φmk,cp, respectively (see [10,

Section III.E]). For notational convenience, we define the

N×K matrix Hm = [hmk . . .hmK ] as the matrix containing

the channel responses from AP m to all the scheduled K users.

Although the small-scale fading gains αmk,cp are considered

static throughout the coherence interval and then change inde-

pendently (i.e., block fading), the spatial covariance matrices

Rmk = E

{

hmkh
H
mk

}

are assumed to vary at a much

slower pace (i.e., τLc ≫ τc). Using spatial channel covariance

estimation for hybrid analog-digital MIMO architectures (e.g.

[12]), it can be safely assumed that Rmk is known at the

corresponding mth AP.

III. TRANSMITTER PROCESSING

A. RF precoder design

Using eigen-decomposition, the covariance matrix of the

propagation channel linking MS k and AP m can be

expressed as Rmk = UmkΛmkU
H
mk, where Λmk =

diag ([λmk,1 . . . λmk,rmk
]) contains the rmk non-null eigen-

values of Rmk, and Umk is the N × rmk matrix of the

corresponding eigenvectors. Hence, assuming the use of (con-

strained) statistical eigen beamforming [13], the analog RF

precoder/combiner can be designed as

WRF
m =

[

wRF
mκm1

. . . wRF
mκmLA

]

(3)

where wRF
mκml

= e−j∠umκml,max , umk,max is the dominant

eigenvector of Rmk associated to the maximum eigenvalue

λmk,max, and the function ∠x returns the phase angles, in

radians, for each element of the complex vector x. Note

that using the RF precoding/combining matrix, the equivalent

channel vector between MS k and AP m, including the RF

precoding/decoding matrix, is defined as

gmk = WRF
m

T
hmk ∈ C

LA×1, (4)

whose dimension is much less than the number of antennas

of the massive MIMO array used at the mth AP, thus largely

simplifying the small-scale training phase.

B. Channel estimation

Communication in any coherence interval of a TDD-based

massive MIMO system invariably starts with the MSs sending

the pilot sequences to allow the channel to be estimated at the

APs. Let τp denote the UL training phase duration (measured

in samples on a time-frequency grid) per coherence interval.

During the UL training phase, all K MSs simultaneously

transmit pilot sequences of τp samples to the APs resulting

in the LA × τp received UL signal matrix at the mth AP

Y pm =
√

τpPp

K
∑

k′=1

gmk′ϕT
k′ +Npm, (5)

where Pp is the transmit power of each pilot symbol, ϕk

denotes the τp × 1 training sequence assigned to MS k,

with ‖ϕk‖2F = 1, and Npm is an LA × τp matrix of

i.i.d. additive noise samples with each entry distributed as

CN (0, σ2

u(N)). Ideally, training sequences should be chosen

to be mutually orthogonal, however, since in most practical

scenarios it holds that K > τp, a given training sequence is

assigned to more than one MS, thus resulting in the so-called
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pilot contamination. Channel estimation is conducted adhering

to the minimum mean square error (MMSE) criterion, resulting

in a estimated channel vector [1]

ĝmk =
√

τpPpR
RF
mkQ

−1

mkY pmϕ∗
k, (6)

where

RRF
mk = E

{

gmkg
H
mk

}

= WRF
m

T
RmkW

RF
m

∗
, (7)

and Qmk = τpPp

∑K
k′=1

RRF
mk′

∣

∣ϕT
k′ϕ∗

k

∣

∣

2

+ σ2

u(N)ILA
.

The MMSE channel vector estimates can be shown to be

distributed as

ĝmk ∼ CN
(

0, R̂
RF

mk

)

with R̂
RF

mk , τpPpR
RF
mkQ

−1

mkR
RF
mk

H
.

Furthermore, the channel vector gmk can be decomposed

as gmk = ĝmk + g̃mk, where g̃mk is the MMSE channel

estimation error, which is statistically independent of both

gmk and ĝmk. For notational convenience, matrices Ĝm =
[ĝm1

, . . . , ĝmK ] and G̃m = [g̃m1
, . . . , g̃mK ] correspond to

the estimated and error matrices for AP m.

C. Baseband precoder design

Relying on the MMSE estimates of the equivalent baseband

channel ĝmk, and in line with [3], we can define the classical

zero-forcing (ZF) MU-MIMO baseband precoder as WBB =

Ĝ
∗
(

Ĝ
T
Ĝ

∗
)−1

or, equivalently,

WBB
m = Ĝ

∗

m

(

Ĝ
T
Ĝ

∗
)−1

∀m, (8)

where G = [GT
1
. . . GT

M ]T , with Gm = WRF
m

T
Hm, repre-

senting the equivalent (RF precoded) MIMO channel matrix

between the K MSs and the M APs.

D. Quantized downlink data transmission

Let us define s = [s1 . . . sK ]
T

as the K × 1 vector of

symbols to be conveyed to the MSs, holding E
{

ssH
}

= IK .

Let us also define xm = Pm (s) as the N × 1 vector of

signals transmitted from the mth AP, where Pm (s) is used to

denote the mathematical operations (linear and/or non-linear)

used to obtain xm from s. Note that this vector must comply

with a power constraint E
{

‖xm‖2F
}

≤ Pm, where Pm is the

maximum average transmit power available at AP m.

In particular, the processing of symbol vector s, includes,

first, a baseband precoding task at the CPU, second, a com-

pressing process of the data that must be sent from the CPU

to the APs through the fronthaul links and, third, an RF

precoding task at each of the APs. Using [14], the distortion

introduced by the quantization/unquantization processes for

the signals processed at the mth AP, can be modelled as

Q̂m(x) , Q−1

m (Qm(x)) = x + qm with qm denoting the

quantization noise. Transmitter processing can be defined as

xm = Pm(sd) = WRF
m Q̂m

(

WBB
m Υ

1/2s
)

= WRF
m

(

WBB
m Υ

1/2s+ qm

)

,
(9)

where WBB =
[

WBB
1

T
. . . WBB

M

T
]T

∈ C
MLA×K ,

with WBB
m ∈ C

LA×K denoting the baseband precoding

matrix affecting the signal transmitted by the mth AP, and

Υ = diag ([υ1 . . . υK ]) is a K×K diagonal matrix containing

the power control coefficients in its main diagonal, which

should be chosen adhering to the mth AP’s power constraint.

According to results in [14], [15], quantization noise can be

assumed to be statistically distributed as qm ∼ CN
(

0, σ2

qmI
)

.

As shown in [14], this assumption is supported by the fact that

large-block lattice quantization codes are able to approximate

a Gaussian quantization noise distribution.

Based on results in [15], it can be shown that the required

average rate at the mth AP, Ĉm, to transfer the quantized

vector Q̂m

(

WBB
m Υ

1/2s
)

on the corresponding DL fronthaul

link (in bps/Hz) can be upper-bounded by

Ĉm ≤ log
2
det

(

1

σ2
qm

K
∑

k=1

υkR
BB
mk + ILA

)

, (10)

where RBB
mk = E

{

wBB
mkw

BB
mk

H
}

.

Using the proposed hybrid compress-after-precoding (CAP)

approach, and denoting by gk, ĝk and g̃k the kth row of G, Ĝ

and G̃, respectively, the signal received by the kth MS follows

yk =gT
k Ĝ

∗
(

Ĝ
T
Ĝ

∗
)−1

Υ
1/2s+ ηk

=
(

ĝ
T
k + g̃T

k

)

Ĝ
∗
(

Ĝ
T
Ĝ

∗
)−1

Υ
1/2s+ ηk

=
√
υksk + g̃T

k Ĝ
∗
(

Ĝ
T
Ĝ

∗
)−1

Υ
1/2s+ ηk

(11)

where ηk = gT
k [q

T
1
, . . . , qT

M ]T +nk with nk ∼ N (0, σ2). The

first term denotes the useful received signal, the second term

contains the interference due to the use of imperfect channel

state information (CSI) (pilot contamination), and the third

term encompass both the quantification and thermal noise.

IV. MAX-MIN POWER ALLOCATION AND QUANTIZATION

Analysis techniques similar to those applied, for instance,

in [1], [3], [9], can be used to derive the DL achievable rate.

In particular, if the sum of the second and third terms on the

right hand side (RHS) of (11), are treated as effective noise,

the achievable rate (in bits/s/Hz) of MS k using the analog

precoders WRF
m , for all m ∈ {1, . . . ,M}, and a ZF baseband

precoder is given by Rdk = log
2
(1 + SINRdk), with

SINRk =
υk

∑K
k′=1

υk′̟kk′ + σ2
ηk

, (12)

where ̟kk′ =
[

diag
(

E

{

WBBH
g̃∗
kg̃

T
kW

BB
})]

k′

and

σ2

ηk
=

∑M
m=1

σ2

qm
tr

(

RRF
mk

)

+ σ2.

In line with previous research works [1], [3], power control

coefficients υk, for all k ∈ {1, . . . ,K}, and the quantization

noise variances σ2

q dm
, are sought for all m ∈ {1, . . . ,M},

that maximize the minimum of the achievable DL rates of

all MSs while satisfying the average transmit power and DL
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TABLE I: Summary of default simulation parameters

Parameters Value

Carrier frequency: f0 28 GHz

Bandwidth: B 20 MHz

Side of the square coverage area: D 200 m

AP/MS antenna heights: hAP /hMS 15 m/1.65 m

Noise figure at the MS: NFMS 9 dB

Available average power at the AP: Pm 200 mW

Coherence interval length: τc 200 samples

Training phase length: τp 15 samples

fronthaul capacity constraints at each AP. Mathematically, this

optimization problem can be formulated as

max
Υ�0

σq�0

min
k∈{1,...,K}

υk
∑K

k′=1
υk′̟kk′ + σ2

ηk

s.t.

K
∑

k=1

υkθ
BB/RF
mk ≤ Pm − σ2

qm
LAN, ∀m,

log
2
det

(

K
∑

k=1

υk

σ2
qm

RBB
mk + ILA

)

≤ CF d, ∀m,

(13)

using the definitions σq = [σq1 . . . σqM ]T and θ
BB/RF
mk =

E

{

∥

∥

∥
WRF

m wBB
mk

∥

∥

∥

2

F

}

, and the fact that

∥

∥

∥
WRF

m

∥

∥

∥

2

F
= LAN .

Optimization problem (13) is characterized by a continuous

objective and constraint functions of interdependent block

variables, namely, Υ and σq , which can be solved using the

so-called block coordinate descend (BCD) method. In BCD,

at each iteration and in a cyclic order, one of the blocks is

optimized while the remaining variables are held fixed [16].

Convergence of the BCD method is ensured whenever each

of the subproblems to be optimized in each iteration can be

exactly solved to its unique optimal solution. As shown in [17],

problem (13) can be transformed into an equivalent convergent

quasi-linear optimization problem that can be solved using

conventional standard convex optimization methods [1], [3].

V. NUMERICAL RESULTS

Simulations results are now presented to quantitatively study

the performance of the proposed cell-free mmWave massive

MIMO network with constrained-capacity fronthaul links. For

simplicity of exposition, and without loss of generality, a cell-

free scenario is considered where the M APs and K MSs are

uniformly distributed at random within a square coverage area

of size D × D m2. A modified version of the discrete-time

narrowband clustered channel model proposed by Akdeniz et

al. in [10, Table I] is used in the performance evaluation.

Furthermore, as in [1], a shadow fading spatial correlation

model with two components is also considered where the

decorrelation distance is set to ddecorr = 50 m and the

parameter δ is set to 0.5. For scenarios where K > τp, pilot

allocation is conducted using dissimilarity cluster-based pilot

assignment (DCPA) trying to minimize the effects of pilot

contamination (see [17] for details). User scheduling, enforced

whenever K > L, is conducted using an iterative-reverse

algorithm (similar to that used in graph theory to construct a

minimum spanning tree from a edge-weighted graph) proposed

in [17]. The rest of simulation parameters are summarized in

Table I. The max-min achievable rate per user is plotted on

the left side of Fig. 1 against the number of active MSs in the

network, assuming the use of different fronthaul capacities.

Note that for the network setups under consideration, using

fronthaul links with a capacity of 256 bit/s/Hz is virtually

equivalent to using infinite-capacity fronthauls. As expected,

results show that increasing the fronthaul capacity is always

beneficial if the main aim is to increase the achievable max-

min user rate. Nevertheless, it is worth stressing that, keeping

all the other parameters constant, the marginal increment of

performance produced by each new increment of the fronthaul

capacity suffers from the law of diminishing returns, especially

for network setups with a high number of active MSs. In

particular, is hardly justifiable increasing the fronthaul capacity

beyond 64 bit/s/Hz. The right plot of Fig. 1 depicts the

achievable max-min user rate against the number of active

MSs when considering different number of antenna elements

(note that the number of RF chains remains fixed to L = 8).

Notice how irrespective of the number of active MSs in the

cell-free network, increasing the number of antenna elements

at the APs in scenarios with high capacity fronthaul links

(CF d = 64 bit/s/Hz), although moderate and again subject to

the law of diminishing returns, always produces an increase

in the achievable max-min user rate. Note in both plots the

considerable performance drop caused by pilot contamination

when the number of users in the system exceeds the pilot

sequence length (i.e., K > 15).

In order to deepen in the study of the impact the RF

infrastructure may have, the average max-min user rate is

plotted in Fig. 2 against the number of antenna elements (left

plot) and RF chains (right plot), respectively, for different

values of the fronthaul capacities and assuming a fixed number

of K = 20 active MSs. In network setups using very high

capacity fronthaul links (i.e., CF d = 256 bit/s/Hz), increasing

the number of antenna elements N and/or the number of RF

chains L (up to L = K) is always beneficial as, in this case,

the noise introduced by the quantization process is negligible

and the system can take full advantage of the increased RF

resources. As the capacity of the fronthaul links decreases,

however, the amount of noise introduced by the quantization

process increases with both N and L and, therefore, a situation

arises where the potential performance improvement provided

by the increase of N and/or L is compromised by the

performance reduction due to fronthaul capacity constraints.

On the one hand, it can be observed on the left plot in Fig.

2 that there is a certain fronthaul capacity constraint value

(near 24 bit/s/Hz in this case) under which increasing the

number of antenna elements at the array is counterproductive.

On the other hand, results presented on the right plot in Fig.

2 show that, for fixed K and N , there is always an optimal

number of RF chains to be deployed (or activated) at the APs

that dependens on the fronthaul capacity. In this scenario, the

optimal number of RF chains become L = 10, 4, and 1 when

2019 27th European Signal Processing Conference (EUSIPCO)



0 10 20 30 40 50

Number of users (K)

4

6

8

10

12

14

16

18

A
ve
ra
ge

m
ax

-m
in

u
se
r
ra
te

(b
it
/s
/H

z)

Downlink

CF d = 256 bps/Hz
CF d = 64 bps/Hz
CF d = 32 bps/Hz
CF d = 16 bps/Hz

0 10 20 30 40 50

Number of users (K)

4

6

8

10

12

14

16

18

A
ve
ra
ge

m
ax

-m
in

u
se
r
ra
te

(b
it
/s
/H

z)

Downlink

N = 128
N = 64
N = 32
N = 16
N = 8

Fig. 1: Average max-min rate per user versus the number of active
MSs for different values of the fronthaul capacities (left, with N = 64

antennas) and different number of AP antennas (right, with Cf = 64

bits/s/Hz). For both plots, L = 8 RF chains.
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Fig. 2: Average max-min rate per user versus number of antennas
at the APs (left, with L = 8 RF chains) and versus number of RF
chains at the APs (right, with N = 64 antennas) for different values
of the fronthaul capacities. For both plots K = 20 users.

using fronthaul capacities of 64 bit/s/Hz, 32 bit/s/Hz and less

than 24 bit/s/Hz, respectively.

VI. CONCLUSION

A novel analytical framework targeting cell-free mmWave

massive MIMO networks using capacity-constrained fronthaul

links has been presented. The proposed framework considers

the use of low-complexity hybrid precoders/decoders and

the use of large-block lattice quantization codes able to ap-

proximate a Gaussian quantization noise distribution. Max-

min power allocation and fronthaul quantization optimiza-

tion problems have been posed thanks to the development

of mathematically tractable expressions for both the per-

user achievable rates and the fronthaul capacity consumption.

Results show that, although increasing the fronthaul capacity

and/or the density of APs per area unit is always beneficial

from the point of view of the achievable max-min user rate,

the marginal increment of performance produced by each

new increment of these parameters suffers from the law of

diminishing returns, especially for network setups with a high

number of active MSs. Moreover, simulation results indicate

that, as the capacity of the fronthaul link decreases, the

potential performance improvement provided by the increase

of the number of antenna elements N and/or the number of RF

chains L is compromised by the performance reduction due to

the corresponding increase of the fronthaul quantization noise.
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