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Abstract—Frequency diverse array (FDA) has sparked intense
interest in recent years because of its range-angle-dependent
beampattern. By combining with the multiple-input and multiple-
output (MIMO) technique, additional degrees of freedom (DOFs)
are provided. However, dynamic environments require the design
of a precisely controlled beampattern to enhance the robustness
of the radar system. In this paper, the precise response control
(PRC) algorithm is studied in the FDA-MIMO radar by imposing
artificial interferences within rectangular regions in the joint
transmit-receive spatial frequency domain. The algorithm is
performed via two stages. In the first stage, artificial interferences
are concurrently imposed to iteratively adjust the responses.
In the second stage, extra artificial interferences are added to
satisfy the predefined response requirement for all regions. The
jammer-plus-noise covariance matrix is constructed accordingly
and the weight vector is updated. Particularly, the jammer-to-
noise ratio (JNR) of each artificial interference is figured out.
Numerical results are provided to corroborate the performance
of the transmit-receive two-dimensional beampattern in FDA-
MIMO.

Index Terms—FDA-MMO radar, artificial interference, two-
dimensional beampattern, rectangular regions, jammer-plus-
noise covariance matrix, joint transmit-receive spatial frequency
domain

I. INTRODUCTION

Beamforming techniques for antenna arrays have been wide-
ly investigated. To improve the system performance and en-
hance the robustness, a host of applications ranging from radar
and navigation to wireless communication systems require the
design of a desired beampattern [1]. Particularly, dynamic
environments where the range and angle of the interference are
time-varying arouse the need for broadened nulls to adequately
suppress the moving interferences. Moreover, it is necessary
to mitigate returns from interfering signals by designing a
beampattern with low sidelobe level.

Over the last several decades, significant attention has
been paid to pattern synthesis. By iteratively minimizing
the deviation between the synthesized and desired patterns,
the beampattern is adjusted using the adaptive array theory
[2,3]. However, parameter selection needs further investiga-
tion. Methods based on intelligent optimization algorithms
[4-6] use stochastic approaches to design the beampattern.
However, they suffer from high computational complexity.
Optimization methods such as semidefinite relaxation (SDR)
was applied to pattern synthesis [7]. Nevertheless, the resultant
beampattern cannot be controlled precisely since the relaxation
leads to an approximate solution. Moreover, a systematic
approach was presented in [8] by imposing artificial interferers
in sidelobes. However, the powers of artificial interferences are
selected in an ad hoc way. In [9], the optimal and precise array
response control (OPARC) algorithm was proposed and a new
formulation of the weight vector was devised.

Notably, these methods to preciously control the beampat-
tern were developed based on the phased array. The frequency
diverse array (FDA) has been widely investigated during
the past few years [10-12]. It can generate a range-angle-
time-dependent beampattern by utilizing a small frequency
increment across array elements. The advantages of FDA over
the traditional phased array have been extensively explored
in the literatures [13,14]. By combining with the multiple-
input and multiple-output (MIMO) technique, the FDA-MIMO
radar provides more degrees of freedom (DOFs) and has found
an immense utilization [15-17]. Although many efforts have
been devoted to FDA-MIMO radar, existing works do not take
into account the robustness issue frequently encountered in
practice.

Adaptive beamformers can extract the signal of interest
(SOI) while suppressing interferences by adjusting the weight
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vector according to the environment. However, sufficient train-
ing samples are needed to estimate the jammer-plus-noise
covariance matrix and the performance will degrade if they
are no longer independent and identically distributed. Data-
independent beamforming is defined by forming a fixed spatial
directivity pattern at a particular point. It is easy to implement
without samples. Thus, the data-dependent adaptive array
theory can be applied into a data-independent situation.

In this paper, the precise response control (PRC) algorithm
is proposed to control the transmit-receive two-dimensional
(2-D) beampattern in FDA-MIMO radar. Multiple artificial
interferences are assigned within a prescribed rectangular
region in the joint transmit-receive spatial frequency domain.
Subsequently, the jammer-plus-noise covariance matrix is con-
structed. This allows us to optimally update the weight vector
to achieve the given response. Specifically, the jammer-to-
noise ratio (JNR) of each artificial interference is figured out.
Notably, the jammer-plus-noise covariance matrix has no phys-
ical meaning since it is obtained with artificial interferences
instead of real samples.

The remainder of this paper is organized as follows. Section
II presents the transmit-receive 2-D beampattern in FDA-
MIMO radar. The PRC method to precisely control the 2-D
beampattern is explored in Section III. Simulation results and
performance analysis are given in Section IV. Conclusions are
drawn in Section V.

Notations: j
∆
=

√
−1. Boldfaced lowercase letters such as

x represent a vector, and boldfaced uppercase letters, such as
A, denote a matrix. For the vector x, we use [x]n to denote
the n-th component of vector x. For the matrix A, we use
[A]m,n to denote the component of A in the m-th row and
the n-th column, [A]m,: to denote the m-th row vector of A
and [A]:,n to denote the n-th column vector of A. IN denotes
a N ×N identity matrix. |·| denotes the absolute value. The
transpose and conjugate transpose of a matrix or vector are
denoted by (·)T and (·)† respectively. ⊗ denotes the Kronecker
product. The symbols C and N+ are the complex space and
the positive integer space, respectively. diag {·} denotes the
diagonal matrix.

II. TRANSMIT-RECEIVE 2-D BEAMPATTERN IN
FDA-MIMO RADAR

We consider a colocated FDA-MIMO radar system which
consists of M transmit elements and N receive elements with
half-wavelength inter-element distance. The carrier frequency
increases linearly across the aperture with a small frequency
increment ∆f , and the carrier frequency of the m-th (m =
1, 2, · · · ,M ) element is written as

fm = f0 + (m− 1)∆f, (1)

where f0 is the reference carrier frequency. Given a far-field
point target at the angle θ0 and range R0, the round-trip
propagation time delay from the m-th transmit element to the
n-th (n = 1, 2, · · · , N ) receive element is expressed as

τm,n = τ0 −
d (n− 1) sin (θ0) + d (m− 1) sin (θ0)

c
, (2)

where c is the speed of light, τ0 = 2R0

c , d is the inter-element
spacing. Under the assumption of a narrowband, the signal
received by the n-th element is expressed as

yn (t− τ0) ≈ α
M∑

m=1
xm (t− τ0) exp {j2πfm (t− τm,n)}

=α exp {j2πf0 (t− τ0)} exp {jπ (n− 1) sin (θ0)}

·
M∑

m=1

xm (t− τ0) exp {j2π∆f (m− 1) (t− τ0)}
· exp {jπ (m− 1) sin (θ0)} ,

(3)
where α is the complex-valued coefficient of the point source
and xm(t) is the m-th transmitted waveform. The complex
envelopes are assumed to be orthogonal to each other, i.e.,∫
Tp

xm′ (t)x∗
m (t− τ) = 0,m ̸= m′, ∀τ with Tp being the

radar pulse duration and τ being an arbitrary time delay. After
matched filtered with xm (t− τ0) exp {j2πfmt} and stacking
the output vector from N receive elements, the received signal
is decomposed as

xs = ξSb(f
S
R)⊗ a

(
fS
T

)
, (4)

where ξS denotes the equivalent coefficient of the target [17],
fS
T and fS

R denote the transmit and receive spatial frequencies,
which are expressed as

fS
T = −∆f

2R0

c
+

1

2
sin (θ0) , (5a)

fS
R =

1

2
sin (θ0) , (5b)

a
(
fS
T

)
∈ CM×1 and b

(
fS
R

)
∈ CN×1 represent the transmit

and receive steering vectors, respectively, and they have the
forms of

a
(
fS
T

)
=

[
1, ej2πf

S
T , · · · , ej2π(M−1)fS

T

]T
, (6a)

b
(
fS
R

)
=

[
1, ej2πf

S
R , · · · , ej2π(N−1)fS

R

]T
. (6b)

It follows the normalized transmit-receive 2-D beampattern
in the joint transmit-receive spatial frequency domain as

P (fT, fR) =
uH

S

MNu
=

[
1
M aH

(
fS
T

)
a (fT)

]
⊗

[
1
N bH

(
fS
R

)
b (fR)

]
=

[
1
M

sin(πM(fT−fS
T))

sin(π(fT−fS
T))

ej2π(M−1)(fT−fS
T)
]
·[

1
N

sin(πN(fR−fS
R))

sin(π(fR−fS
R))

ej2π(N−1)(fR−fS
R)
]
,

(7)

where u
∆
= b(fR) ⊗ a (fT), fT = fR = 1

2 sin (θ), and uS
∆
=

b(fS
R)⊗ a

(
fS
T

)
.

III. PRC METHOD TO PRECISELY CONTROL THE 2-D
BEAMPATTERN

In this section, the PRC method is proposed to precisely
control the 2-D beampattern in FDA-MIMO radar. We define
a rectangular region set {Θq}Qq=1 and a predefined response
set {ξq}Qq=1. In the first stage, multiple artificial interferences
with specific JNRs are assigned concurrently within each
rectangular region using the iteration algorithm.
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Fig. 1: Artificial interferences within one rectangular region.

Shown in Fig. 1, fTq and fRq are respectively defined
as the central transmit and receive frequencies of Θq . f∆Tq

and f∆Rq denote the transmit and receive frequency scope of
Θq , respectively. In the l-th (l ∈ N+) iteration, the transmit
and receive frequencies of the interference are determined by
comparing the obtained response with the desired one. For the
q-th rectangular region, transmit and receive frequencies of the
l-th interference are selected as

f l
Tq = arg

fi
T∈Θq

∣∣max
(
P
(
f i
T, f

i
R

)
− ξq

)∣∣ , (8a)

f l
Rq = arg

fi
R∈Θq

∣∣max
(
P
(
f i
T, f

i
R

)
− ξq

)∣∣ . (8b)

Thus, the jammer-plus-noise covariance matrix is construct-
ed as

R{l} = R{l−1} + σ2
wUlΣlU

H
l , (9)

where R{0} = σ2
wIM×N , σ2

w denotes the power of the
Gaussian distributed noise, Σl

∆
= diag

{
σ2
l1

σ2
w
,
σ2
l2

σ2
w
, · · · , σ2

lQ

σ2
w

}
denotes the JNR matrix with σ2

lq being the power of the
interference within the q-th region in the l-th iteration, Ul =

[ul1,ul2, · · · ,ulQ] denotes an MN × Q matrix with ulq
∆
=

b(f l
Rq)⊗a

(
f l
Tq

)
being the steering vector of the interference.

The inverse of R{l} is written as(
R{l})−1

=
(
R{l−1})−1

−
(
R{l−1})−1

Ul

(
IQ + σ2

wΣlU
H
l

(
R{l−1})−1

Ul

)−1

·σ2
wΣlU

H
l

(
R{l−1})−1

.
(10)

According to the adaptive theory [18], the weight vector can
be obtained as

wl = Λl

(
R{l})−1

uS

=
ΓH

l−1−(R
{l−1})

−1
Ul(IQ+σ2

wΣlΥl)
−1

σ2
wΣlU

H
l (R

{l−1})
−1

uS

Γl−1uS−Γl−1Ul(IQ+σ2
wΣlΥl)

−1σ2
wΣlUH

l (R{l−1})
−1

uS

,

(11)
where Υl = UH

l

(
R{l−1})−1

Ul, Γl−1 = uH
S

(
R{l−1})−1

, and

the coefficient is written as

Λl =
(
uH
S

(
R{l−1})−1

uS

)−1

=

 uH
S

(
R{l−1})−1

uS − uH
S

(
R{l−1})−1

Ul (IQ

+SlU
H
l

(
R{l−1})−1

Ul

)−1

SlU
H
l

(
R{l−1})−1

uS

−1

.

(12)

With a predefined response ξq at ulq , the normalized
transmit-receive 2-D beampattern which is pointed at uS and
evaluated at ulq is written as

P (ulq |uS )=wH
l ulq=ξq. (13)

Substituting (11) into (13), the response of the beampattern
at ulq with a predefined response ξq is derived as follows

P (ulq |uS )=wH
l ulq=ξq

=
Γl−1ulq−Γl−1Ul(IQ+SlΥl)

−1SlU
H
l (R

{l−1})
−1

ulq

Γl−1uS−Γl−1Ul(IQ+SlΥl)
−1SlUH

l (R{l−1})
−1

uS

,
(14)

where SJ
∆
= σ2

wΣJ . The equation is further expressed as

Γl−1Ul(IQ + SlΥl)
−1

SlU
H
l

(
R{l−1})−1

(ξquS − ulq)
= Γl−1ξquS − Γl−1ulq.

(15)

As there are Q regions to be precisely controlled, we can
further form an equation by collecting Q responses, i.e.,
P (ul1 |uS )=ξ1, P (ul2 |uS )=ξ2, · · · , P (ulQ |uS )=ξQ.
Define a Q × Q matrix Yl

∆
= UH

l

(
R{l−1})−1 (

uSξ
T −Ul

)
with [Yl]:,q = UH

l

(
R{l−1})−1

(ξquS − ulq),

ξ
∆
= [ξ1, ξ2, · · · , ξQ]T, ηl

∆
= Γl−1uSξ

T − Γl−1Ul with
[ηl]q = ξqΓl−1uS − Γl−1ulq . The equation is expressed as

Γl−1Ul(IQ + SlΥl)
−1

SlY = ηl. (16)

Since Sl, Υl, and Y are all L × L full-rank matrices, the
matrix (IQ + SlΥl)

−1
SlYl is a nonsingular matrix. Multi-

plying
[
(IQ + SlΥl)

−1
SlYl

]−1

to both sides of the equation
simultaneously, (16) is written as

Γl−1Ul − ηlY
−1
l Υl = ηlY

−1
l S−1

l . (17)

As Sl is a diagonal matrix, the JNR of the q-th interference
is calculated as

[Σl]q,q =
[Sl]q,q
σ2
w

=
σ2
lq

σ2
w

=

[
ηlY

−1
l

]
q

σ2
w

[
Γl−1Ul − ηlY

−1
l Υl

]
q

. (18)

Notably, only the response of the temporarily imposed
interference can be precisely controlled in each iteration,
however, the previously-controlled responses may have some
perturbations. Thus, if the response requirement of one region
is satisfied, in the second stage, only a small amount of
extra artificial interferences are imposed successively within
the remaining regions in order to guarantee the predefined
responses for all regions.

Take the q-th region for example, the jammer-plus-noise
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covariance matrix in the k-th(k ∈ N+) iteration is updated as

R{k} = R{k−1} + σ2
kuku

H
k , (19)

where the initial matrix R{0} = R{l} is calculated using (9).
According to P (uk |uS ) = ξq , that is

P (uk |uS ) = ξq =
uH

S(R
{k−1})

−1
ukΥ−σ2

ku
H
S(R

{k−1})
−1

uku
H
k (R

{k−1})
−1

uk

uH
S(R{k−1})

−1
uSΥ−σ2

ku
H
S(R{k−1})

−1
uku

H
k (R{k−1})

−1
uS

,

(20)
where Υ

∆
= 1 + σ2

ku
H
k

(
R{k−1})−1

uk. Then, the power of
interference from the q-th rectangular region in the k-th
iteration is calculated as

σ2
k = 1

ξquH
S(R{k−1})

−1

· uH
S(R

{k−1})
−1

(uk−ξuS)[
uSuH

k (R{k−1})
−1

uk−ukuH
k (R{k−1})

−1
uS

] , (21)

By imposing extra artificial interferences within each rectan-
gular region, the response levels can be successively adjusted
until the predefined response control requirement is satisfied
for all regions. Finally, the developed PRC method in the FDA-
MIMO radar is summarized in Algorithm 1.

Algorithm 1 PRC Algorithm

1. Give Q, {Θq}Qq=1,
{
fTq

}Q

q=1
,
{
fRq

}Q

q=1
, {βq}Qq=1 = ∞,

{ξ}Qq=1, uS , Ul, R{0} = σ2
wIM×N , σ2

w, l = 1, k = 1;
while min

q
{βq} > βε do

2. Select f l
Tq and f l

Rq according to (8);

3. Calculate
σ2
lq

σ2
w

using (18) and obtain Σl =

diag
{

σ2
l1

σ2
w
,
σ2
l2

σ2
w
, · · · , σ2

lQ

σ2
w

}
;

4. Update R{l} = R{l−1} + σ2
wUlΣlU

H
l ;

5. Update wl = Λl

(
R{l})−1

uS using (11);
6. Obtain βq = max

q
{P (Θq |uS )− ξq};

7. l = l + 1;
end while
8. Select the remaining {Θq}Qq=1,q ̸=q∗

to add extra artificial
interferences;
while βq > βε do

9. Select fk
Tq and fk

Rq according to (8);
10. Calculate σ2

k according to (21);
11. Update R{k} = R{k−1} + σ2

kuku
H
k ;

12. k = k + 1;
end while
13. Output: weight vector wFINAL =(
uH
S

(
R{k−1})−1

uS

)−1(
R{k})−1

uS.

IV. SIMULATION RESULTS

In this section, simulations are performed to verify the
effectiveness of the proposed PRC algorithm to precisely
control the transmit-receive 2-D beampattern in FDA-MIMO
radar. Simulation parameters are listed in Table 1.

TABLE I: Simulation Parameters

Parameter Value
carrier frequency 10GHz

N = M 10
Frequency increment 3750Hz

wavelength 0.03m
PRF 5000Hz
Q 3

{ξq}Qq=1 {0.0018, 0.01, 0.0005}
{f∆Tq}Qq=1 {0.05, 0.1, 0.05}
{f∆Rq}Qq=1 {0.5, 0.1, 0.1}{
fTq

}Q

q=1
{0.25,−0.25,−0.375}{

fRq

}Q

q=1
{0,−0.25, 0}

βε 0.0005
fS
T 0
fS
R 0

region #1

region #2

region #3

(a)

0.2 0.24 0.28 0.32
-66

-62

-58

-54

-50

(b)

Fig. 2: Precise response of transmit-receive 2-D beampattern. (a) Beampattern with
controlled regions. (b) Equivalent transmit beampattern at fR = 0.
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Fig.2 illustrates the resultant transmit-receive 2-D beam-
pattern with the PRC algorithm. We consider a notch with
-55dB, two null regions with -60dB and -66dB, respectively.
It is seen from Fig. 2 (a) that the beampattern with precisely
controlled response is formed in the joint transmit-receive
spatial frequency domain. The responses in region #1 are low
and the null depths for region #2 and region #3 are deep. Fig.
2 (b) shows the beampatterns of the proposed algorithm at
fR = 0 for different iterations. It can be seen that the responses
of region #1 and region #3 decrease with the increase of
iterations. Notice that the response level is lower than the
desired one because the previously-controlled responses may
have some perturbations. Moreover, we compare the PRC
algorithm with the linearly constrained minimum variance
(LCMV) beamformer where several linear constraints are
imposed when minimizing the output variance [19]. As we can
see, the PRC method outperforms the LCMV beamformer.

Fig. 3: Maximum difference of the resultant beampattern and the predefined value versus
number of iterations.

Fig. 3 demonstrates the maximum difference of the resultant
beampattern and the predefined value for different regions.
Monte Carlo experiments with 200 trials are carried out. It
can be seen that the values of differences for region #1 and
region #3 drop rapidly after about 10 iterations. It means the
proposed PRC algorithm features high speed of convergence.

V. CONCLUSIONS

In this paper, the response of the transmit-receive 2-D
beampattern in FDA-MIMO radar was precisely controlled
via jammer-plus-noise covariance matrix construction. Subse-
quently, the weight vector was updated to achieve the desired
response. The algorithm was firstly performed by concurrently
imposing artificial interferences within rectangular regions in
the joint transmit-receive spatial frequency domain. In the
second stage, extra artificial interferences were added to satisfy
the response requirement for all regions. In particular, closed-
form expressions of the JNRs of artificial interferences were
given.

With the proposed method, a 2-D beampattern with low
sidelobe levels and broadened deep nulls in precisely con-

trolled rectangular regions is formed. It can be applied to jam-
mer suppression where the range and angle of the interference
are time-varying.
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